Genomic dark matter activity connects Parkinson's and psychiatric diseases

September 20, 2018, Brigham and Women's Hospital
Illustration depicting transcribed noncoding elements (TNE or enhancer RNAs) in the brain Credit: Clemens Scherzer, Brigham and Women's Hospital

Dopamine neurons are located in the midbrain, but their tendril-like axons can branch far into the higher cortical areas, influencing how we move and how we feel. New genetic evidence has revealed that these specialized cells may also have far-reaching effects, implicating them in conditions that range from Parkinson's disease to schizophrenia. Using a new technique known as laser-capture RNA seq, that involves cutting out dopamine neurons from a human brain section with a laser, investigators from Brigham and Women's Hospital and Harvard Medical School have cataloged more than 70,000 novel elements active in these brain cells. Their results are published this week in Nature Neuroscience.

"We found that a whopping 64 percent of the human genome—the vast majority of which is 'dark matter' DNA that does not code proteins—is expressed in in the human ," said Clemens Scherzer, MD, a neurologist and genomicist who directs the APDA Center for Advanced Parkinson's Disease Research and leads the Precision Neurology Program at BWH. "These are critical and specialized cells in the human brain, which are working sluggishly in Parkinson's disease, but might be overactive in schizophrenia."

Scherzer's team developed laser-capture RNAseq to precisely dissect out dopamine neurons from the brain and perform ultradeep RNA sequencing on cells. From 86 post-mortem brains, the team was able to extract more than 40,000 dopamine neurons. While other groups have focused on protein-producing messenger RNA, Scherzer and colleagues wanted to catalog the cells' entire RNA content, which required taking a much deeper dive.

In total, they found 71,022 transcribed noncoding elements (so called TNEs). Many of these TNEs (pronounced "teenies") are active enhancers—sites that act as regulatory "switches" for turning on specialized functions for billions of neurons in the brain. Many of the TNEs the team unearthed are novel and had never before been described in the brain. Working with collaborators in England, Scherzer and colleagues tested several of the TNEs in preclinical models, including zebrafish, finding evidence that many were active in brain development.

Scherzer and first-author Xianjun Dong, Ph.D., who are also Principal Investigators at the Ann Romney Center at BWH, originally set out to study dopamine neurons to gain insights into Parkinson's but found that many of the genetic variants associated with schizophrenia, addiction and other neuropsychiatric diseases were also enriched in these elements.

"This work suggests that noncoding RNAs active in dopamine neurons are a surprising link between genetic risk, Parkinson's and psychiatric disease," said Scherzer. "Based on this connection we hypothesize that the risk variants might fiddle with the gene switches of dopamine-producing ."

The team has also made an encyclopedia of RNA content for publicly available so that other investigators can look up any protein-coding or noncoding target for biomarkers and therapeutics for Parkinson's and psychiatric diseases through the webportal http://www.humanbraincode.org.

Explore further: Conversion of brain cells offers hope for Parkinson's patients

More information: Xianjun Dong et al, Enhancers active in dopamine neurons are a primary link between genetic variation and neuropsychiatric disease, Nature Neuroscience (2018). DOI: 10.1038/s41593-018-0223-0

Related Stories

Conversion of brain cells offers hope for Parkinson's patients

April 11, 2017
Researchers at Karolinska Institutet have made significant progress in the search for new treatments for Parkinson's disease. By manipulating the gene expression of non-neuronal cells in the brain, they were able to produce ...

Early synaptic dysfunction found in Parkinson's Disease

May 24, 2018
Northwestern Medicine scientists identified a cellular mechanism that leads to neurodegeneration in patients with Parkinson's disease, according to a study published in Proceedings of the National Academy of Sciences.

Scientific discovery may change treatment of Parkinson's disease

March 22, 2017
When monitoring Parkinson's disease, SPECT imaging of the brain is used for acquiring information on the dopamine activity. A new study conducted in Turku, Finland, shows that the dopamine activity observed in SPECT imaging ...

HIV lies dormant in brain, increasing risk of dementia, but how?

May 23, 2018
The HIV virus, which causes AIDS, has long been known to target and disable cells of the immune system, which are responsible for fighting off invading microorganisms and for suppressing malignant cancers. More recently, ...

New effort to identify Parkinson's biomarkers

March 5, 2013
Last month, the National Institutes of Health announced a new collaborative initiative that aims to accelerate the search for biomarkers—changes in the body that can be used to predict, diagnose or monitor a disease—in ...

Researchers uncover how dopamine transports within the brain

January 25, 2016
Researchers at University of Florida Health have discovered the mechanics of how dopamine transports into and out of brain cells, a finding that could someday lead to more effective treatment of drug addictions and neurological ...

Recommended for you

What prevents remyelination? New stem cell research reveals a critical culprit

December 18, 2018
New research on remyelination, the spontaneous regeneration of the brain's fatty insulator that keeps neurons communicating, could lead to a novel approach to developing treatments for multiple sclerosis (MS) and other inflammatory ...

Genetic changes tied to rare brain bleeds in babies

December 18, 2018
(HealthDay)—Researchers say they've identified genetic mutations linked with a blood vessel defect that can lead to deadly brain bleeds in babies.

Gene variant found in brain complicit in MS onset

December 18, 2018
Multiple sclerosis (MS) is an autoimmune disease affecting the function of the central nervous system. Up to now, most of the 230 genetic variants associated with the disease have been linked to changes in immune cells. However, ...

Biologists identify promising drug for ALS treatment

December 18, 2018
A drug typically used to treat hepatitis could slow the progression of ALS, also known as Lou Gehrig's disease, according to new research by University of Alberta scientists.

Communication between neural networks

December 18, 2018
The brain is organized into a super-network of specialized networks of nerve cells. For such a brain architecture to function, these specialized networks – each located in a different brain area – need to be able to communicate ...

Neurons with good housekeeping are protected from Alzheimer's

December 17, 2018
Some neurons in the brain protect themselves from Alzheimer's with a cellular cleaning system that sweeps away toxic proteins associated with the disease, according to a new study from Columbia University and the University ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.