One type of brain cell might hold key to inflammation after head injury

November 7, 2018, The Ohio State University

By eliminating one type of immune cell in the brain, researchers were able to erase any evidence of inflammation following traumatic brain injury, according to a new study from The Ohio State University.

"We used a drug to wipe out called microglia in mice that had experienced , and the inflammation that is a hallmark of traumatic vanished," said Kristina Witcher, the Ohio State graduate student who led the study, which was presented Nov. 7 in San Diego at the annual Society for Neuroscience meeting.

Finding potential targets for treatment of serious brain injury is a major goal of neuroscience because there are currently no known approved medications to treat it, Witcher said. Furthermore, understanding cellular-level changes associated with sports-related concussion and other brain injuries could give health care providers better scientific support for post-injury recommendations, such as how long an athlete should stay off the field, she said.

The study was designed to mimic the type of traumatic brain injury a person would experience after hitting his or her head with enough force to briefly lose consciousness.

"Chronic inflammation with brain injury is harmful, and in this study we were able to eliminate that inflammatory response of the immune system by targeting just one specific cell type," said Jonathan Godbout, the study's senior author and assistant director for basic science at Ohio State's Institute for Behavioral Medicine Research.

"Now, we have a specific cell to aim for when looking at potential interventions to decrease the harm caused by concussions," Godbout said.

Though other cell types, including those that make up blood vessels, have been previously implicated in the inflammation following serious head injury, this study offers detailed proof that immune cells called microglia play a key role, said Godbout, a professor of neuroscience who is part of Ohio State Wexner Medical Center's Neurological Institute.

The drug used in the study to eliminate the microglia from the mouse brain isn't likely a potential treatment for brain injury in humans because it would cause too much damage to other vital functions of these cells, which make up about 10 to 15 percent of all brain cells, he said.

"We don't know the long-term effects of eliminating these , but we are doing more physiological, biochemical and behavioral analysis to get to the bottom of that question," Godbout said.

The research team also is seeking more details about the inflammatory response at different periods of time after injury.

"You have to understand the changing nature of what's happening in these cells in order to better determine where and when to intervene," Witcher said.

Previous efforts to treat with anti-inflammatories have been unsuccessful in humans, Witcher said, highlighting the need for neuroscientists to explore novel treatment approaches.

The research also uncovered an anomaly in the microglia cells in the brain after injury: They were elongated.

"For now, we don't really know what that structure means and whether it has any functional significance, but those are questions we'd like to explore," Witcher said.

She and Godbout also said they're interested in understanding if some of the cells are "good guys" and others are "bad guys."

"It's possible that some promote inflammation and others work against it, maybe even by keeping neurons alive," Godbout said.

Explore further: Sugar, a 'sweet' tool to understand brain injuries

Related Stories

Sugar, a 'sweet' tool to understand brain injuries

October 15, 2018
Australian researchers have developed ground-breaking new technology which could prove crucial in treating brain injuries and have multiple other applications, including testing the success of cancer therapies.

Helmets may not protect skiers from traumatic brain injury

September 3, 2018
(HealthDay)—The use of helmets may not protect alpine sports participants from traumatic brain injury, according to a study recently published in Wilderness & Environmental Medicine.

Researchers identify how inflammation spreads through the brain after injury

March 8, 2017
Researchers have identified a new mechanism by which inflammation can spread throughout the brain after injury. This mechanism may explain the widespread and long-lasting inflammation that occurs after traumatic brain injury, ...

Researchers identify brain cells responsible for removing damaged neurons after injury

June 25, 2018
Researchers at the University of Virginia School of Medicine have discovered that microglia, specialized immune cells in the brain, play a key role in clearing dead material after brain injury. The study, which will be published ...

Study reveals role of spleen in prolonged anxiety after stress

November 13, 2016
Scientists are uncovering clues to what might be unfolding in the relationship between the brain and immune system in those who suffer from long-term repercussions of stress.

How a concussion can lead to depression years later

December 9, 2013
(Medical Xpress)—A head injury can lead immune-system brain cells to go on "high alert" and overreact to later immune challenges by becoming excessively inflammatory – a condition linked with depressive complications, ...

Recommended for you

Newborn babies' brain responses to being touched on the face measured for the first time

November 16, 2018
A newborn baby's brain responds to being touched on the face, according to new research co-led by UCL.

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

New brain imaging research shows that when we expect something to hurt it does, even if the stimulus isn't so painful

November 14, 2018
Expect a shot to hurt and it probably will, even if the needle poke isn't really so painful. Brace for a second shot and you'll likely flinch again, even though—second time around—you should know better.

A 15-minute scan could help diagnose brain damage in newborns

November 14, 2018
A 15-minute scan could help diagnose brain damage in babies up to two years earlier than current methods.

New clues to the origin and progression of multiple sclerosis

November 13, 2018
Mapping of a certain group of cells, known as oligodendrocytes, in the central nervous system of a mouse model of multiple sclerosis (MS), shows that they might have a significant role in the development of the disease. The ...

Mutations, CRISPR, and the biology behind movement disorders

November 12, 2018
Scientists at the RIKEN Center for Brain Science (CBS) in Japan have discovered how mutations related to a group of movement disorders produce their effects. Published in Proceedings of the National Academy of Sciences, the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.