Memory B cells in the lung may be important for more effective influenza vaccinations

December 5, 2018 by Jeff Hansen, University of Alabama at Birmingham
Troy Randall and Frances Lund. Credit: UAB

Seasonal influenza vaccines are typically less than 50 percent effective, according to Centers for Disease Control and Prevention studies. Research at the University of Alabama at Birmingham, published this week in Nature Immunology, may point a path to more effective vaccines.

Researchers led by Troy Randall, Ph.D., professor in the UAB Department of Medicine's Division of Clinical Immunology and Rheumatology, studied a type of immune cell in the called a resident memory B cell. Up to now, it had not been clear if these might be useful to combat influenza infections or even if they existed at all.

Using a mouse model of influenza and experiments that included parabiosis—the linking of the blood circulatory systems between two mice—Randall and colleagues definitively showed that lung-resident memory B cells establish themselves in the lung soon after influenza . Those lung-resident memory B cells responded more quickly to produce antibodies against influenza after a second infection, as compared to the response by the circulating memory B cells in lymphoid tissue. The UAB also found that establishment of the lung-resident memory B cells required a local antigen encounter in the lung.

"These data demonstrate that lung-resident memory B cells are an important component of immunity to respiratory viruses like influenza," Randall said. "They also suggest that vaccines designed to elicit highly effective, long-lived protection against influenza virus infection will need to deliver antigens to the respiratory tract."

B cells, or B lymphocytes, are a class of white blood cells that can develop into antibody-secreting or into dormant memory B cells. Specific antibodies produced by the infection-fighting plasma cells help neutralize or destroy viral or bacterial pathogens. Memory B cells "remember" a previous infection and are able to respond more quickly to a second infection by the same pathogen, and thus are part of durable immunity.

The UAB researchers showed that the lung-resident memory B cells do not recirculate throughout the body after establishment in the lungs. They also showed that the lung-resident memory B cells had a different phenotype, as measured by cell surface markers, than the systemic memory B cells found in lymphoid tissue. The lung-resident memory B cells uniformly expressed the chemokine receptor, CXCR3, and they completely lacked the lymph node homing receptor, CD62L.

The crucial experiments to show that the non-circulating, influenza-specific memory B cells permanently resided in the lung involved parabiosis. A mouse of one strain was infected with influenza, then surgically connected with a different strain mouse six weeks later. After two weeks with a shared blood circulation, naïve B cells in the mediastinal and the spleens of both mice had equilibrated evenly among the two mice; but the memory B cells remained in the previously infected lung and did not migrate to the naïve lung.

Similar experiments of this type showed that inflammation in the naïve lung did not induce the lung memory cells to migrate to the inflamed naïve lung, and if each animal was infected with different strains of influenza, and then paired, the memory B cells for each strain of influenza remained in the lungs infected with that strain. The researchers also found—by shortening the time between infection and pairing—that the lung-resident memory B cells were established within two weeks of infection.

Explore further: Researchers describe how lungs stand guard against the flu

More information: S. Rameeza Allie et al, The establishment of resident memory B cells in the lung requires local antigen encounter, Nature Immunology (2018). DOI: 10.1038/s41590-018-0260-6

Related Stories

Researchers describe how lungs stand guard against the flu

October 10, 2014
Influenza viruses mutate annually, making it difficult to produce vaccines that induce antibodies capable of recognizing the changing proteins on the surface of the flu virus and conferring long-term immunity.

Understanding T cell activation could lead to new vaccines

May 30, 2017
Scientists could be one step closer to developing vaccines against viruses such as Zika, West Nile or HIV, according to Penn State College of Medicine researchers.

Flu-fighting cells in noses could lead to one-shot flu vaccine

June 5, 2017
A sneeze is often the first sign of a cold or flu. But a sneeze, or more accurately our noses, could be the secret to stopping the influenza virus in its tracks through what scientists are calling a "nasal border patrol".

Breakthrough in designing a better Salmonella vaccine

September 24, 2018
UC Davis researchers announce in the Proceedings of the National Academy of Sciences this week a breakthrough in understanding which cells afford optimal protection against Salmonella infection—a critical step in developing ...

Virus infection sheds light on memory T cells living in our skin

February 29, 2012
Very recently, researchers discovered an important population of immune cells called memory T cells living in parts of the body that are in contact with the environment (e.g., skin, lung, GI tract). How these "resident" memory ...

Recommended for you

HIV vaccine protects non-human primates from infection

December 14, 2018
For more than 20 years, scientists at Scripps Research have chipped away at the challenges of designing an HIV vaccine. Now new research, published in Immunity, shows that their experimental vaccine strategy works in non-human ...

RNA processing and antiviral immunity

December 14, 2018
The RIG-I like receptors (RLRs) are intracellular enzyme sentries that detect viral infection and initiate a first line of antiviral defense. The cellular molecules that activate RLRs in vivo are not clear.

The 'greying' of T cells: Scientists pinpoint metabolic pathway behind age-related immunity loss

December 13, 2018
The elderly suffer more serious complications from infections and benefit less from vaccination than the general population. Scientists have long known that a weakened immune system is to blame but the exact mechanisms behind ...

Scientists create most accurate tool yet developed to predict asthma in young children

December 13, 2018
Scientists at Cincinnati Children's Hospital Medical Center have created and tested a decision tool that appears to be the most accurate, non-invasive method yet developed to predict asthma in young children.

New genetic study could lead to better treatment of severe asthma

December 12, 2018
The largest-ever genetic study of people with moderate-to-severe asthma has revealed new insights into the underlying causes of the disease which could help improve its diagnosis and treatment.

Researchers discover unique immune cell likely drives chronic inflammation

December 11, 2018
For the first time, researchers have identified that an immune cell subset called gamma delta T cells that may be causing and/or perpetuating the systemic inflammation found in normal aging in the general geriatric population ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.