An 'EpiPen' for spinal cord injuries

spinal cord
Credit: CC0 Public Domain

An injection of nanoparticles can prevent the body's immune system from overreacting to trauma, potentially preventing some spinal cord injuries from resulting in paralysis.

The approach was demonstrated in mice at the University of Michigan, with the nanoparticles enhancing healing by reprogramming the aggressive —call it an "EpiPen" for trauma to the central nervous system, which includes the brain and spinal cord.

"In this work, we demonstrate that instead of overcoming an immune response, we can co-opt the immune response to work for us to promote the therapeutic response," said Lonnie Shea, the Steven A. Goldstein Collegiate Professor of Biomedical Engineering.

Trauma of any kind kicks the body's immune response into gear. In a normal injury, immune cells infiltrate the damaged area and clear debris to initiate the regenerative process.

The central nervous system, however, is usually walled off from the rough-and-tumble of immune activity by the blood-brain barrier. A spinal cord injury breaks that barrier, letting in overzealous immune cells that create too much inflammation for the delicate neural tissues. That leads to the rapid death of neurons, damage to the insulating sheaths around that allow them to send signals, and the formation of a scar that blocks the regeneration of the spinal cord's .

All of this contributes to the loss of function below the level of the injury. That spectrum includes everything from paralysis to a loss of sensation for many of the 12,000 new spinal injury patients each year in the United States.

Previous attempts to offset complications from this included injecting steroids like methylprednisolone. That practice has largely been discarded since it comes with side effects that include sepsis, gastrointestinal bleeding and blood clots. The risks outweigh the benefits.

But now, U-M researchers have designed nanoparticles that intercept immune cells on their way to the spinal cord, redirecting them away from the injury. Those that reach the spinal cord have been altered to be more pro-regenerative.

With no drugs attached, the nanoparticles reprogram the immune cells with their : a size similar to cell debris and a negative charge that facilitates binding to immune cells. In theory, their nonpharmaceutical nature avoids unwanted side effects.

With fewer immune cells at the trauma location, there is less inflammation and tissue deterioration. Second, immune cells that do make it to the injury are less inflammatory and more suited to supporting tissues that are trying to grow back together.

"Hopefully, this technology could lead to new therapeutic strategies not only for patients with injury but for those with various inflammatory diseases," said Jonghyuck Park, a U-M research fellow working with Shea.

Previous research has shown success for nanoparticles mitigating trauma caused by the West Nile virus and multiple sclerosis, for example.

"The underlies autoimmune disease, cancer, trauma, regeneration—nearly every major disease," Shea said. "Tools that can target immune cells and reprogram them to a desired response have numerous opportunities for treating or managing disease."


Explore further

Using donor stem cells to treat spinal cord injury

More information: Jonghyuck Park et al, Intravascular innate immune cells reprogrammed via intravenous nanoparticles to promote functional recovery after spinal cord injury, Proceedings of the National Academy of Sciences (2019). DOI: 10.1073/pnas.1820276116
Citation: An 'EpiPen' for spinal cord injuries (2019, July 11) retrieved 23 July 2019 from https://medicalxpress.com/news/2019-07-epipen-spinal-cord-injuries.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
1096 shares

Feedback to editors

User comments

Jul 11, 2019
There are external herbal mixtures used by Asian Martial arts schools that are effective in reducing inflammation, - the Chinese formulas use alcohol as the base, East Indian formulas typically use an oil as the base. The number of herbs can range up to 30 - 40 ingredients.

My personal exposure to the variant formula of Master Gin Food Mark leads me to believe an application of Dit Da Jow to a cloth placed on the skin immediate to the injury site might well be just as effective, Master Mark had described martial arts training that was so intense that he and his partner had a mixture made up sufficient to immerse their entire bodies in a vessel to deal with all the contusions and bruising.

Please contact gzurbay@yahoo.com

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more