Is too much brain activity connected to Alzheimer's disease?

August 16, 2012, Public Library of Science

High baseline levels of neuronal activity in the best connected parts of the brain may play an important role in the development of Alzheimer's disease. This is the main conclusion of a new study appearing in PLoS Computational Biology from a group at VU University Medical Center in Amsterdam, the Netherlands.

In recent times, it has become clear that patterns change at an early stage in Alzheimer's disease. Moreover, there is reason to believe that, instead of being the consequence of structural damage, they might be the cause: recently, a direct influence of excessive regional on Alzheimer pathology was found in animal experiments. By showing that highly connected 'hub' regions (which display most Alzheimer pathology) indeed possess the highest levels of activity, the present study offers support for the unconventional view that brain dynamics may play a causal role in Alzheimer. As first author, Willem de Haan, says, "this implies that the investigation of factors regulating neuronal activity may open up novel ways to detect, elucidate and counter the disease".

Using a realistic computational model of the human cortex, the authors simulated progressive synaptic damage to based on their level of activity, and subsequently investigated the effect on the remaining network. With this 'activity dependent degeneration' model, they could not only offer an explanation for the distribution pattern of Alzheimer pathology but also reproduce a range of phenomena encountered in actual neurophysiological data of Alzheimer patients: loss and slowing of neuronal activity, loss of communication between areas, and specific changes in brain network organization.

In upcoming projects the authors plan to verify the predictions from this study in patient data, but also to continue modeling studies. They conclude that: "the use of 'computational neurology' and network theory to unite experimental results and find plausible underlying principles in the growing bulk of human brain data seems inevitable".

Explore further: Researchers have identified a gene with a key role in neuronal survival

More information: de Haan W, Mott K, van Straaten ECW, Scheltens P, Stam CJ (2012) Activity Dependent Degeneration Explains Hub Vulnerability in Alzheimer's Disease. PLoS Comput Biol 8(8): e1002582. doi:10.1371/journal.pcbi.1002582

Related Stories

Researchers have identified a gene with a key role in neuronal survival

April 16, 2012
Spanish researchers at the Institute of Neurosciences at Universitat Autonoma de Barcelona (INc-UAB) identified the fundamental role played by the Nurr1 gene in neuron survival associated with synaptic activity. The discovery, ...

Cells talk more in areas Alzheimer's hits first, boosting plaque component

May 2, 2011
(Medical Xpress) -- Higher levels of cell chatter boost amyloid beta in the brain regions that Alzheimer’s hits first, researchers at Washington University School of Medicine in St. Louis report. Amyloid beta is the ...

Mayo Clinic maps brain, finds Alzheimer's patients drive differently

July 16, 2012
Activity lingers longer in certain areas of the brain in those with Alzheimer's than it does in healthy people, Mayo Clinic researchers who created a map of the brain found. The results suggest varying brain activity may ...

Recommended for you

Alzheimer's disease: Neuronal loss very limited

January 17, 2018
Frequently encountered in the elderly, Alzheimer's is considered a neurodegenerative disease, which means that it is accompanied by a significant, progressive loss of neurons and their nerve endings, or synapses. A joint ...

Anxiety: An early indicator of Alzheimer's disease?

January 12, 2018
A new study suggests an association between elevated amyloid beta levels and the worsening of anxiety symptoms. The findings support the hypothesis that neuropsychiatric symptoms could represent the early manifestation of ...

One of the most promising drugs for Alzheimer's disease fails in clinical trials

January 11, 2018
To the roughly 400 clinical trials that have tested some experimental treatment for Alzheimer's disease and come up short, we can now add three more.

Different disease types associated with distinct amyloid-beta prion strains found in Alzheimer's patients

January 9, 2018
An international team of researchers has found different disease type associations with distinct amyloid-beta prion strains in the brains of dead Alzheimer's patients. In their paper published in Proceedings of the National ...

Advances in brain imaging settle debate over spread of key protein in Alzheimer's

January 5, 2018
Recent advances in brain imaging have enabled scientists to show for the first time that a key protein which causes nerve cell death spreads throughout the brain in Alzheimer's disease - and hence that blocking its spread ...

Molecular mechanism behind HIV-associated dementia revealed

January 5, 2018
For the first time, scientists have identified and inhibited a molecular process that can lead to neurodegeneration in patients with HIV, according to a Northwestern Medicine study published in Nature Communications.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.