Researchers create 'endless supply' of myelin-forming cells

November 1, 2012
Scientists create 'endless supply' of myelin-forming cells

(Medical Xpress)—In a new study appearing this month in the Journal of Neuroscience, researchers have unlocked the complex cellular mechanics that instruct specific brain cells to continue to divide. This discovery overcomes a significant technical hurdle to potential human stem cell therapies; ensuring that an abundant supply of cells is available to study and ultimately treat people with diseases.

"One of the major factors that will determine the viability of stem cell therapies is access to a safe and reliable supply of cells," said University of Rochester Medical Center (URMC) neurologist Steve Goldman, M.D., Ph.D., lead author of the study. "This study demonstrates that – in the case of certain populations of – we now understand the and the mechanisms necessary to control cell division and generate an almost endless supply of cells."

The study focuses on cells called glial (GPCs) that are found in the white matter of the human brain. These stem cells give rise to two cells found in the : oligodendrocytes, which produce myelin, the that insulates the connections between cells; and astrocytes, cells that are critical to the health and signaling function of oligodendrocytes as well as neurons.

Damage to myelin lies at the root of a long list of diseases, such as multiple sclerosis, cerebral palsy, and a family of deadly called pediatric leukodystrophies. The scientific community believes that regenerative medicine – in the form of – holds great promise for treating myelin disorders. Goldman and his colleagues, for example, have demonstrated in numerous animal model studies that transplanted GPCs can proliferate in the brain and repair damaged myelin.

However, one of the barriers to moving forward with human treatments for myelin disease has been the difficulty of creating a plentiful supply of necessary cells, in this case GPCs. Scientists have been successful at getting these cells to divide and multiply in the lab, but only for limited periods of time, resulting in the generation of limited numbers of usable cells.

"After a period of time, the cells stop dividing or, more typically, begin to specialize and form astrocytes which are not useful for myelin repair," said Goldman. "These cells could go either way but they essentially choose the wrong direction."

Overcoming this problem required that Goldman's lab master the precise chemical symphony that occurs within , and which instructs them when to divide and multiply, and when to stop this process and become and astrocytes.

One of the key players in cell division is a protein called beta-catenin. Beta-catenin is regulated by another protein in the cell called glycogen synthase kinase 3 beta (GSK3B). GSK3B is responsible for altering beta-catenin by adding an additional phosphate molecule to its structure, essentially giving it a barcode that the cell then uses to sort the protein and send it off to be destroyed. During development, when cell division is necessary, this process is interrupted by another signal that blocks GSK3B. When this occurs, the beta-catenin protein is spared destruction and eventually makes its way to the cell's nucleus where it starts a chemical chain reaction that ultimately instructs the cell to divide. However, after a period of time this process slows and, instead of replicating, the cells begin to then commit to becoming one type or another. The challenge for scientists was to find another way to essentially trick these cells into continuing to divide, and to do so without risking the uncontrolled growth that could otherwise result in tumor formation.

The new discovery hinges on a receptor called protein tyrosine phosphatase beta/zeta (PTPRZ1). Goldman and his team long suspected that PTPRZ1 played an important role in cell division; the receptor shows up prominently in molecular profiles of GPCs. After a six-year effort to discern the receptor's function, they found that it works in concert with GSK3B and helps "label" beta-catenin protein for either destruction or nuclear activity. The breakthrough was the identification of a molecule – called pleiotrophin – that essentially blocks the function of the PTPRZ1 receptor. They found that by regulating the levels of pleiotrophin, they were able to essentially "short circuit" PTPRZ1's normal influence on , allowing the cells to continue dividing.

While the experiments were performed on cells derived from tissue, the authors contend that the same process could also be applied to GPCs derived from embryos or from "reprogrammed" skin cells. This would greatly expand the number of potentially derived from single patient samples, whether for transplantation back to those same individuals or for use in other patients.

Explore further: Researchers at the doorstep of stem cell therapies for MS, other myelin disorders

Related Stories

Researchers at the doorstep of stem cell therapies for MS, other myelin disorders

October 25, 2012
When the era of regenerative medicine dawned more than three decades ago, the potential to replenish populations of cells destroyed by disease was seen by many as the next medical revolution. However, what followed turned ...

Precision with stem cells a step forward for treating MS, other diseases

October 13, 2011
Scientists have improved upon their own previous world-best efforts to pluck out just the right stem cells to address the brain problem at the core of multiple sclerosis and a large number of rare, fatal children's diseases.

A new program for neural stem cells

May 12, 2011
German researchers succeed in obtaining brain and spinal cord cells from stem cells of the peripheral nervous system.

New drug targets for squamous cell carcinoma

May 19, 2011
Researchers at Fred Hutchinson Cancer Research Center have discovered a new drug target for squamous cell carcinoma – the second most common form of skin cancer. Scientists in the laboratory of Valeri Vasioukhin, Ph.D., ...

Outwitting a brainy gene

May 1, 2012
(Medical Xpress) -- The very first in the series of mutations causing colon cancer occurs in the beta-catenin gene; this gene is abnormally activated in about 90 percent of colorectal cancer patients, and in a much smaller ...

Recommended for you

Discovery deepens understanding of brain's sensory circuitry

December 12, 2017
Because they provide an exemplary physiological model of how the mammalian brain receives sensory information, neural structures called "mouse whisker barrels" have been the subject of study by neuroscientists around the ...

Intermittent fasting found to increase cognitive functions in mice

December 12, 2017
(Medical Xpress)—The Daily Mail spoke with the leader of a team of researchers with the National Institute on Aging in the U.S. and reports that they have found that putting mice on a diet consisting of eating nothing every ...

Neuroscientists show deep brain waves occur more often during navigation and memory formation

December 12, 2017
UCLA neuroscientists are the first to show that rhythmic waves in the brain called theta oscillations happen more often when someone is navigating an unfamiliar environment, and that the more quickly a person moves, the more ...

Stuttering: Stop signals in the brain disturb speech flow

December 12, 2017
One per cent of adults and five per cent of children are unable to achieve what most of us take for granted—speaking fluently. Instead, they struggle with words, often repeating the beginning of a word, for example "G-g-g-g-g-ood ...

How Zika virus induces congenital microcephaly

December 12, 2017
Epidemiological studies show that in utero fetal infection with the Zika virus (ZIKV) may lead to microcephaly, an irreversible congenital malformation of the brain characterized by an incomplete development of the cerebral ...

Selecting sounds: How the brain knows what to listen to

December 11, 2017
How is it that we are able—without any noticeable effort—to listen to a friend talk in a crowded café or follow the melody of a violin within an orchestra?

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.