New findings in the search for genetic clues to insulin production

December 23, 2012
This is Karen Mohlke, Ph.D., one of the study’s senior authors and associate professor of genetics at the University of North Carolina School of Medicine. Credit: National Human Genome Research Institute

In research published online Dec. 23, 2012 in the journal Nature Genetics, scientists have found three new and relatively rare genetic variants that influence insulin production, offering new clues about the genetic factors behind diabetes..

"Studying genetic variants—even rare ones—helps us learn how genes affect health and disease," said Karen Mohlke, PhD, one of the study's senior authors and associate professor of genetics at the University of North Carolina School of Medicine. "In this study, we've implicated new genes as playing a role in insulin processing and secretion."

The study is also the first time genetic insights have been reported using exome array genotyping, a new tool that is less costly than genetic sequencing. This analysis allows scientists to quickly screen for known variants in specific genes. It is especially helpful for testing variants that are rare.

"The exome array allowed us to test a large number of individuals—in this case, more than 8,000 people—very efficiently," said Mohlke. "We expect that this type of analysis will be useful for finding low-frequency variants associated with many complex traits, including obesity or cancer."

The scientists pulled data from a large directed by researchers at the University of Eastern Finland. A research team including postdoctoral scientist Jeroen Huyghe at the University of Michigan, Ann Arbor led the statistical analysis, which integrated and detailed for a sample of 8,229 Finnish males.

Diabetes, which affects more than 25 million people in the United States, results from problems with the body's ability to produce or use insulin. Rather than pinpointing one gene behind the disease, scientists believe there are a whole host of genes that interact with health and to influence a person's chances of getting the disease.

The study revealed that certain variants of three genes—called TBC1D30, KANK1 and PAM—are associated with abnormal or processing, even in people without diabetes. The genes may predispose such individuals to developing the disease.

As a next step, the researchers plan to continue to investigate how these genes may lead to diabetes. They also expect the results will inspire other scientists to use exome analysis to look at the genetic factors behind other complex diseases.

Explore further: Why resist insulin? Finding genes associated with insulin resistance

Related Stories

Why resist insulin? Finding genes associated with insulin resistance

June 11, 2012
(Medical Xpress) -- Researchers have uncovered six genetic regions that appear to affect resistance to the effects of insulin, which is important in many cases of type 2 diabetes. Previously, only two regions had been described.

Broader approach reveals genetic complexity behind diabetes genes

September 4, 2012
(Medical Xpress)—Using a new method, diabetes researchers at Lund University, Sweden, have been able to reveal more of the genetic complexity behind type 2 diabetes. The new research findings have been achieved as a result ...

Genetic risks for type 2 diabetes span multiple ethnicities

February 9, 2012
A recent large and comprehensive analysis of 50,000 genetic variants across 2,000 genes linked to cardiovascular and metabolic function has identified four genes associated with type 2 diabetes (T2D) and six independent disease-associated ...

Novel type 2 diabetes genetic study involves five major ancestry groups

November 8, 2012
A consortium of scientists who are taking a novel approach in their research to detect the genetic variations that predispose individuals to type 2 diabetes provided an update of their findings at the American Society of ...

Surprising findings from Exome Sequencing Project reported

November 6, 2012
A multi-institutional team of researchers has sequenced the DNA of 6,700 exomes, the portion of the genome that contains protein-coding genes, as part of the National Heart, Lung and Blood Institute (NHLBI)-funded Exome Sequencing ...

As population exploded, more rare genes entered human genome

May 11, 2012
(Medical Xpress) -- As the Earth's human population has skyrocketed since the rise of agriculture some 10,000 years ago -- to 7 billion people from a few million -- so, too, has the number of rare genetic variants.

Recommended for you

A rogue gene is causing seizures in babies—here's how scientists wants to stop it

July 26, 2017
Two rare diseases caused by a malfunctioning gene that triggers seizures or involuntary movements in children as early as a few days old have left scientists searching for answers and better treatment options.

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.