New characterization of human genome mutability catalyzes biomedical research

August 20, 2013 by Seth Palmer, Pennsylvania State University
Human chromosomes segmented by rates of four types of mutations; human DNA is compared with DNA from other primates (e.g., orangutans in background) and then processed using a statistical segmentation technique. Credit: K. Makova and F. Chiaromonte

As biomedical researchers continue to make progress toward the realization of personalized genomic medicine, their focus is increasingly tuned to highly mutable regions of the human genome that contribute significantly to genetic variation and many inherited disorders.

Accurately characterizing mutability has posed a serious challenge, but a team of Penn State researchers recently took an important step toward providing a comprehensive geographic characterization of mutability in the human genome.

The results of an interdisciplinary study led by Huck Institutes of the Life Sciences affiliates Kateryna Makova and Francesca Chiaromonte will be published this week in the journal Proceedings of the National Academy of Sciences.

Other key contributors to the study were Penn State doctoral students Prabhani Kuruppumullage Don, currently a candidate in the statistics program, and Guruprasad Ananda, a graduate of the Huck Institutes' bioinformatics and genomics program who has recently accepted a position with Jackson Laboratory in Bar Harbor, Maine.

"In this project we combined genome-wide data on human-orangutan DNA differences, genetic variability within Homo sapiens, several features of the human genomic landscape, and detailed functional annotations of the human genome," said Makova, professor of biology at and director of the Center for Medical Genomics.

Such rich information allowed the researchers to discern regions of the genome with particular mutational regimes. For example, they found some regions where rates of different mutation types are all elevated (hot regions), and others where the rates are all reduced (cold regions).

"The location of these regions in the genome is not random and can be associated with intragenomic differences in GC content, recombination rates, methylation, etc.," said Makova. "Intriguingly, we found that protein-coding genes preferentially inhabit mutationally hot regions, likely because mutations of these genes can confer an adaptive advantage."

Estimating the rates of four common mutation types—nucleotide substitutions, small (? 30bp) insertions and small deletions, and mononucleotide microsatellite repeat number alterations—across the , the researchers analyzed and mapped the incidence of those mutations onto corresponding chromosomal segments, yielding a genome-wide profile of mutagenetic mechanisms and potential.

"Hidden Markov Models, which have a long history of applications in genomics, were instrumental in unveiling the biological implications of our rich data," said Chiaromonte, professor of statistics and public health sciences.

Using these models, the researchers were able to quantitatively characterize the different mutational regimes, or "hidden states," and to partition the genome into contiguous segments governed by each such regime.

"Importantly, with this approach we are demarcating switches in mutational regimes along the genome—the boundaries between segments—based on the data," said Chiaromonte. "Since we utilize four mutation rates simultaneously, our results account for and exploit interdependencies among different types of change that affect the genome. We also employed simulations to assess associations between mutational regimes, genomic landscape features, and the spatial organization of functional elements."

The paper not only represents a significant contribution to scientists' understanding of the intricacies of human mutagenesis, but also provides a foundation for biomedical analyses, such as screening genomes for cancer- and other disease-related variants, which may assist in the validation of disease-causing sites across the genome and catalyze development of targeted, site-specific therapeutic strategies.

The results have far-reaching implications for several areas of biomedical sciences, according to Makova.

"First, knowledge about mutationally hot and cold regions can aid in screening disease variants, since hot regions are expected to give more false positives," she said. "Second, previous studies demonstrated that mutation rates are usually overestimated when pedigree data are used; we show that such overestimation occurs because of mutations located in hot regions. Third, information about mutationally hot and cold regions can improve predictions of functional noncoding elements in the genome, which are expected to be less conserved in mutationally hot regions. Ultimately, we and other researchers can utilize the results of our analysis, which are publicly available, to address these pressing questions in medical, evolutionary and functional genomics."

Explore further: Genome instability studies could change treatment for cancer and other diseases

Related Stories

Genome instability studies could change treatment for cancer and other diseases

July 2, 2013
Counterintuitive as it may seem, genetic mutation is key to our evolution and survival.

Genomic 'hotspots' offer clues to causes of autism, other disorders

December 20, 2012
An international team, led by researchers from the University of California, San Diego School of Medicine, has discovered that "random" mutations in the genome are not quite so random after all. Their study, to be published ...

Researchers discover genetic imprints and signatures left by DNA-damaging processes that lead to cancer

August 14, 2013
Researchers have provided the first comprehensive compendium of mutational processes that drive tumour development. Together, these mutational processes explain most mutations found in 30 of the most common cancer types. ...

Cancer biology: Charting a tumor's genomic roots

July 17, 2013
Whole-genome sequencing gives researchers a deeper understanding of factors contributing to the onset and progression of gastric cancer.

One step closer to understanding biology behind genetic variants linked to blood cell traits

April 17, 2013
(Medical Xpress)—Researchers at the Wellcome Trust Sanger Institute and University of Cambridge have unpicked genetic variants that affect the formation of blood cells. They found that around a third of the variants play ...

Genetic background check may explain why mutations produce different results

August 1, 2013
Two women have the same genetic mutation – an abnormal BRCA1 gene that puts them both at much higher-than-average risk for breast cancer – but only one woman develops the disease. Why? Michigan State University genetic ...

Recommended for you

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

How incurable mitochondrial diseases strike previously unaffected families

January 15, 2018
Researchers have shown for the first time how children can inherit a severe - potentially fatal - mitochondrial disease from a healthy mother. The study, led by researchers from the MRC Mitochondrial Biology Unit at the University ...

Genes that aid spinal cord healing in lamprey also present in humans

January 15, 2018
Many of the genes involved in natural repair of the injured spinal cord of the lamprey are also active in the repair of the peripheral nervous system in mammals, according to a study by a collaborative group of scientists ...

The coming of age of gene therapy: A review of the past and path forward

January 11, 2018
After three decades of hopes tempered by setbacks, gene therapy—the process of treating a disease by modifying a person's DNA—is no longer the future of medicine, but is part of the present-day clinical treatment toolkit. ...

Large-scale study to pinpoint genes linked to obesity

January 10, 2018
It's not just diet and physical activity; your genes also determine how easily you lose or gain weight. In a study published in the January issue of Nature Genetics, researchers at the Icahn School of Medicine at Mount Sinai ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.