Healing bone defects using regenerative medicine

June 19, 2014, Youris.com

Regenerating bones based on a mixture of tissue engineering approaches is coming of age.

Bone is one of the most frequently transplanted tissues. And the demand is rising. Transplants treat large defects like those caused by trauma, complicated fractures, tumour resection or osteoporosis. Conventionally, a piece of is transferred from one body site to another of the same patient. But this has the disadvantage of causing a defect in an otherwise healthy part of the body. And using bone obtained from a donor also has side effects, such as immunogenic reactions. New methods are thus needed to meet the growing demand.

Now, the EU-funded project VascuBone, due to be completed in December 2014, may offer an alternative solution based on engineering bone grafts to regenerate defects. The project is developing a toolbox for that combines various methods and materials of tissue engineering. "We would like to include everything in our toolbox that is necessary to put together the ideal therapy for a patient", says project coordinator Heike Walles, professor of and regenerative medicine at the University Hospital of Würzburg and also head of the oncology group at the Fraunhofer Institute IGB in Würzburg, Germany. The tools developed and optimised in the project may help to overcome existing shortcomings.

Walles previously developed a three-dimensional scaffold derived from a piece of pig bowel that contains structures supporting the development of blood vessels. Different types of adult stem cells, for example, so-called mesenchymal cells derived from , are supposed to grow on such scaffolds to form the bone substitute. "These cells are even present in old people," Walles tells youris.com. While the cells' potential decreases with age, "they are still there and are able to regenerate", she explains. "But they have to be enriched, which is increasingly difficult with increasing age," she continues.

In the current project, researchers therefore analysed how age influences the stem cells' properties. They identified markers that indicate whether the cells are suited for therapeutic use. They also looked at other types of cells, so-called . These may be necessary for treating very large bone defects. "We analysed which cell type is ideal for therapeutic purposes, such as microvascular endothelial cells or , a stem cell type that can be found in the blood", Walles tells youris.com. After successfully testing the first engineered bone grafts in animal models, "the first clinical trials are going to start this year", Walles tells youris.com. After the clinical trials, she hopes, that these therapies can be offered to patients.

One expert appreciates the need for such tools. "It's a very nice idea to put together different tools and combine different types of cells", says Richard Oreffo, professor of musculoskeletal science at the University of Southampton, UK. "There is a significant need for bone regeneration, given our aging population," he tells youris.com. He believes engineering bone substitutes with the help of and translating the approaches to clinical settings is not far out of reach. "It is just fantastically complicated", he says. "But we have a number of scaffolds in clinical use. We are developing strategies to harness cells. Thus we now have a step-wise approach to reach the clinic in the not too distant future," he adds.

Another expert also welcomes the toolbox approach. "It offers a combination of matrix, cells, bioreactors and automated systems, which can be used to grow tissue under controlled conditions," says Cornelia Kasper, professor for biopharmaceutical technology at the University of Natural Resources and Life Sciences in Vienna, Austria. Researchers "look for biological alternatives to screws, nails and titanium plates", particularly for treating defects larger than three centimetres," she tells youris.com. Providing scaffolds with vessel structures for regenerating large bone defects is "something special and unique", she says.

Kaspar believes using stem cells from the patient's own fat tissue or bone marrow and from the umbilical cord offer a huge potential for bone regeneration and has various advantages. "Particularly, mesenchymal are easily accessible", she tells youris.com. There are no ethical concerns attached to using such cells and there are no immunogenic side effects. What is more, these exist in everyone. "Even slim or old patients have fat tissue," she adds.

She also hopes that such engineering based solutions will be more widely approved and available for patients within the next five to ten years. In her view, it is up to politics and the regulation authorities "to create the prerequisites for a comprehensive patient care". But the cooperation between life scientists, engineers and medical scientists "still remains a real challenge", she concludes.

Explore further: Mixing stem cells with clay to regenerate human tissue

Related Stories

Mixing stem cells with clay to regenerate human tissue

May 2, 2014
Gels made from clay could provide an environment that would stimulate stem cells to regenerate damaged tissues such as bone, skin, heart, spinal cord, liver, pancreas and cornea.

Ground breaking hip and stem cell surgery in Southampton

May 16, 2014
Doctors and scientists in Southampton have completed their first hip surgery with a 3D printed implant and bone stem cell graft.

Adult stem cells help build human blood vessels in engineered tissues

October 14, 2013
(Medical Xpress)—Researchers at the University of Illinois at Chicago have identified a protein expressed by human bone marrow stem cells that guides and stimulates the formation of blood vessels.

Taking tissue regeneration beyond state-of-the-art

June 6, 2014
Researchers in the United Kingdom and Malaysia are developing a new class of injectable material that stimulates stem cells to regenerate damaged tissue and form new blood vessels, heart and bone tissue.

Columbia engineers grow functional human cartilage in lab

April 30, 2014
Researchers at Columbia Engineering announced today that they have successfully grown fully functional human cartilage in vitro from human stem cells derived from bone marrow tissue. Their study, which demonstrates new ways ...

Recommended for you

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.