Scientist finds clearer obesity, diabetes connection

August 27, 2014 by Amanda Siegfried, University of Texas at Dallas
Dr. Jung-whan Kim, assistant professor of molecular and cell biology, prepares to examine cell samples grown in a special low-oxygen chamber. This hypoxic environment is similar to conditions found in the fat tissue of the obese.

(Medical Xpress)—New findings about the biological links between obesity and insulin resistance and Type 2 diabetes may also shed light on the connection between obesity and cancer, says a scientist at The University of Texas at Dallas.

In a study published in the journal Cell, UT Dallas' Dr. Jung-whan Kim and colleagues at the University of California, San Diego found that a protein called HIF-1 alpha plays a key role in the development of insulin resistance and Type 2 diabetes in obese mice.

The researchers genetically engineered the mice to lack the HIF-1 alpha protein within the animals' , or adipocytes. The mice still made HIF-1 alpha in other types of and tissues in their bodies. Although the mice became obese when fed a high-fat diet, they did not develop insulin resistance and diabetes to near the extent that other obese mice did.

"There is clearly a greater chance among the obese human population to develop insulin resistance and diabetes. We still don't know the exact mechanism, but now we know that HIF-1 alpha is very active in the pathogenesis of these diseases from obesity," said Kim, a co-lead author of the study who conducted the research as a postdoctoral researcher at UC San Diego and the Salk Institute for Biological Studies. He joined the UT Dallas faculty as an assistant professor of molecular and cell biology in 2013.

Kim said the findings about HIF-1—hypoxia inducible factor-1—are significant for their possible application to fighting insulin resistance and diabetes as well as cancer. Here's why:

Cells in the body normally consume oxygen to produce energy. But if oxygen levels decrease—for example, during strenuous exercise or at high altitudes—cells enter a condition called hypoxia, or low oxygen. With oxygen in short supply, cells switch their metabolism. Instead of energy, the cells produce reactive oxygen species, which are molecules that can damage or kill cells. To help mitigate the damage, hypoxic cells activate HIF-1 alpha, which shuts down the production of and signals to migrate to the hypoxic areas.

"Organisms need to be able to temporarily adapt to the stress of hypoxic conditions until the situation changes, so when inflammatory cells see this kind of signal, they come to the hypoxic area to do their normal job, which is to basically eat damaged cells," Kim said.

Dr. Jung-whan Kim studies how fat cells behave in hypoxic, or low oxygen, conditions. In this microscope image, a green chemical binds only to fat cells that are hypoxic, making them easier to identify.

In obesity, however, fat cells are in a chronic state of hypoxia.

"If you look at adipose, or fat tissue, in the obese, there is massive and chronic inflammation," he said. "It's a defense mechanism. The inflammatory cells are really good guys, but as obesity persists, inflammation becomes chronic.

"HIF-1 alpha is important for hypoxia adaptation, but it's constantly activated in the obese, and that's where it turns bad," Kim said. "In the obese, HIF-1 is aberrantly and chronically elevated and is the master regulator of ominous chronic inflammation."

To study the effect HIF-1 alpha might have on the development of insulin resistance and diabetes, Kim and his colleagues used genetic engineering techniques to completely remove, or "knock out," HIF-1 alpha from adipose tissue in .

"Once we knocked out HIF-1, everything got better," he said. "The fat cells survived and the mice remained obese, but we saw less inflammation in the fat tissue. These mice responded better to insulin than their normal counterparts, which means insulin sensitivity was improved and glucose tolerance was improved."

Kim said several pharmaceutical companies are developing HIF-1 alpha inhibitors, which might one day result in medications to treat Type 2 diabetes and insulin resistance in obese people. But the primary reason behind the push for HIF-1 alpha inhibitors is cancer.

From left: Mazher Pathan, Anum Wazir, Jae-Jun Ban and Jyothi Krishnaswamy Rajashe are part of the research team in Dr. Jung-whan Kim’s lab.

"Tumor cells grow really fast, but the blood vessels that feed them oxygen cannot grow fast enough, so tumor cells become hypoxic," Kim said. "The have to develop some sort of mechanism to survive under hypoxic stress, and that's HIF-1 alpha.

"If you can inhibit HIF-1 alpha in a tumor cell, you can kill the cell, and that's why pharmaceutical companies are interested in HIF-1 inhibitors."

Kim said one reason for the study was to gain a better understanding of the links between obesity and cancer.

"There is a clear correlation between the two, but it's not clear why have a greater chance of developing certain cancers," he said. "If you look at breast cancer, the glands that produce milk are completely surrounded by fat cells.

"Tumor tissue is hypoxic. Obese tissue is hypoxic. HIF-1 alpha is important in both conditions. I'm very motivated to study the interaction between and fat cells."

Lab to Study Fibrosis Role

Dr. Jung-whan Kim's recent study of the relationship between obesity and Type 2 diabetes and has helped spur new research in his laboratory.

Kim has received an I.M. Rosenzweig Junior Investigator Award from the Pulmonary Fibrosis Foundation to support a study into the role the HIF-1 alpha protein plays in fibrosis, which also can occur in the chronically obese. The grant provides $50,000 over two years.

The HIF-1 protein is activated in the body when cells' oxygen levels decrease.

 "The presence of HIF-1 alpha results in inflammation," he said. "When the body senses inflammation, it tries to confine that inflammation by secreting collagen. But if the inflammation is chronic, as in , then the process is always activated. The tissue or organ develops excessive fibrous tissue, or fibroids, from this collagen, and then loses function."

One of the more dramatic examples of this condition is pulmonary fibrosis, which develops in the lungs. It's a condition seen in many smokers.

 "When you smoke, your lungs experience constant, repeated injury and inflammation, and they develop fibrosis," Kim said. "Healthy lungs are very elastic, but if you have fibrosis, they become stiff and cannot expand.

 "We see fibrosis also in adipose tissue, so we are pursuing this research to better understand HIF-1's role in fibrosis in general."

Explore further: Research helps clarify how obesity leads to type 2 diabetes, cancer

Related Stories

Research helps clarify how obesity leads to type 2 diabetes, cancer

June 5, 2014
New findings about the biological links between obesity, insulin resistance and type 2 diabetes may also shed light on the connection between obesity and cancer, says a scientist at The University of Texas at Dallas.

Cell's recycling center implicated in division decisions

July 28, 2014
Most cells do not divide unless there is enough oxygen present to support their offspring, but certain cancer cells and other cell types circumvent this rule. Researchers at The Johns Hopkins University have now identified ...

Lack of oxygen in cancer cells leads to growth and metastasis

September 13, 2012
(Medical Xpress)—It seems as if a tumor deprived of oxygen would shrink. However, numerous studies have shown that tumor hypoxia, in which portions of the tumor have significantly low oxygen concentrations, is in fact linked ...

Signals found that recruit host animals' cells, enabling breast cancer metastasis

May 22, 2014
Working with mice, Johns Hopkins researchers report they have identified chemical signals that certain breast cancers use to recruit two types of normal cells needed for the cancers' spread. A description of the findings ...

Recommended for you

Diabetes gene found that causes low and high blood sugar levels in the same family

January 15, 2018
A study of families with rare blood sugar conditions has revealed a new gene thought to be critical in the regulation of insulin, the key hormone in diabetes.

Discovery could lead to new therapies for diabetics

January 12, 2018
New research by MDI Biological Laboratory scientist Sandra Rieger, Ph.D., and her team has demonstrated that an enzyme she had previously identified as playing a role in peripheral neuropathy induced by cancer chemotherapy ...

Enzyme shown to regulate inflammation and metabolism in fat tissue

January 11, 2018
The human body has two primary kinds of fat—white fat, which stores excess calories and is associated with obesity, and brown fat, which burns calories in order to produce heat and has garnered interest as a potential means ...

Big strides made in diabetes care

January 5, 2018
(HealthDay)—This past year was a busy, productive one for diabetes research and care.

Gene therapy restores normal blood glucose levels in mice with type 1 diabetes

January 4, 2018
Type 1 diabetes is a chronic disease in which the immune system attacks and destroys insulin-producing beta cells in the pancreas, resulting in high blood levels of glucose. A study published January 4th in Cell Stem Cell ...

Goodbye, needles? Patch might be the future for blood-sugar tracking

January 4, 2018
(HealthDay)—Developers of a new patch hope to eliminate a big barrier in type 2 diabetes treatment—painful finger-sticks and injections. The new patch—which actually uses an array of tiny needles that researchers promise ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Aug 27, 2014
You guys know it is possible to reverse your Diabetes right?I reversed mine. I would check this out
1 / 5 (1) Aug 27, 2014
It's comforting to be even more certain of what we already know. I would think it would be more helpful to spend research dollars trying to reverse it, not prove it exists. But, publish or perish. They get to keep their jobs.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.