Fat a culprit in fibrotic lung damage

November 20, 2014

Pulmonary fibrosis has no cure. It's caused by scarring that seems to feed on itself, with the tougher, less elastic tissue replacing the ever moving and stretching lung, making it increasingly difficult for patients to breathe. Researchers debate whether the lung tissue is directly damaged, or whether immune cells initiate the scarring process - an important distinction when trying to find new ways to battle the disease. Now research shows that both processes may be important, and suggest a new direction for developing novel therapies. The work will publish online November 20th in the American Journal of Respiratory Cell and Molecular Biology.

"By changing our focus, not just to or immune cells, but to how these cells might be communicating, we may find new opportunities for treating ," says Ross Summer, M.D., Associate Professor of in the department of Pulmonary and Critical Care Medicine at Thomas Jefferson University, who studies the disease and regularly treats patient with this illness.

"In the advanced stages of the disease, there's not a lot we can do for patients," says Dr. Summer. Some existing therapies alleviate symptoms, but none reverse or stop disease progression. Many patients live only three to five years after diagnosis, according to the American Lung Association and the only effective treatment is . The team led by Dr. Summer and first author Freddy Romero, Ph.D., looked at a mouse model of lung fibrosis initiated by a chemical known to cause the disease. Researchers noticed that lipids (AKA fat), accumulated within the airspaces of the lung where oxygen is absorbed. Although lipids are normally secreted there to help keep the cells lining the lungs lubricated and properly inflated, these were excessive levels of fat.

The researchers showed that in response to stress, the cells producing the lubricant dump their lipid stores into the lungs and fail to mop up the excess. The excess lipids react with oxygen to create a form of fat that acts as an inflammatory signal; in some ways this response is similar to the events that initiate atherosclerosis, or plaque formation in blood vessels. In the lungs, Dr. Summer's laboratory showed that called macrophages, which normally survey the lung for debris, infection, or dying cells begin gobbling up the excess fat in the lungs. Loaded with this oxidized fat, the macrophages turned on a program that acts to help heal the wounded tissue, but as a consequence to this adaptive response leads to the development of fibrotic lung disease.

"Both the initial damage to the cells lining the airway of the lung and the inflammation are important," says Dr. Romero, "but the thing that drives the damage is the unregulated excess lipids in the distal airspaces." When the researchers put oxidized lipids into the lungs of mice that had not been exposed to any lung-damaging chemicals, the mice also developed fibrosis, showing that the oxidized fat alone was enough to cause the disease.

"These results show, for the first time, that a break-down of normal lipid handling may be behind this lung disease," says Dr. Summer "If we prove that the same process holds true in humans, it suggests that we could prevent or mitigate the disease by simply clearing out the excess oxidized lipids from lungs."

To this end, the researchers tested whether treating mice with an agent called GM-CSF that reduces lipid secretion and facilitates lipid removal in the lungs, could minimize . Indeed, this agent reduced the scarring in the lungs by over 50 percent based on the levels of lung collagen, a marker of newly forming scar tissue. In addition, the researchers examined human cells in the lab and saw that oxidized fat also promoted a fibrotic response.

Future work will focus on exploring whether the same results hold true in humans.

Explore further: Fat damages the lungs of heavy drinkers

More information: F. Romero et al., "A pneumocyte-macrophage paracrine lipid axis drives the lung toward fibrosis," Am J Respir Cell Mol Biol, DOI: 10.1165/rcmb.2014-0343OC , 2014.

Related Stories

Fat damages the lungs of heavy drinkers

June 30, 2014

Heavy drinking damages the body in many ways. In addition to liver failure, alcoholics are at a much greater risk of developing pneumonia and life threatening acute respiratory distress syndrome (ARDS), for which there is ...

Team discovers lung regeneration mechanism

November 12, 2014

A research team led by Jackson Laboratory Professors Frank McKeon, Ph.D., and Wa Xian, Ph.D., reports on the role of certain lung stem cells in regenerating lungs damaged by disease.

Protein molecule may improve survival in deadly lung disease

May 6, 2014

Researchers at the University of Illinois at Chicago College of Medicine have discovered a protein molecule that seems to slow the progression of pulmonary fibrosis, a progressive lung disease that is often fatal three to ...

Recommended for you

Tiny bubbles offer sound solution for drug delivery

June 25, 2017

Your brain is armored. It lives in a box made of bones with a security system of vessels. These vessels protect the brain and central nervous system from harmful chemicals circulating in the blood. Yet this protection system—known ...

Lab grown human colons change study of GI disease

June 22, 2017

Scientists used human pluripotent stem cells to generate human embryonic colons in a laboratory that function much like natural human tissues when transplanted into mice, according to research published June 22 in Cell Stem ...

Paracetamol during pregnancy can inhibit masculinity

June 22, 2017

Paracetamol is popular for relieving pain. But if you are pregnant, you should think twice before popping these pills according to the researchers in a new study. In an animal model, Paracetamol, which is the pain-relieving ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.