New evidence: Defective HIV proviruses hinder immune system response and cure

April 19, 2017, Johns Hopkins University School of Medicine
HIV infecting a human cell. Credit: NIH

Researchers at Johns Hopkins and George Washington universities report new evidence that proteins created by defective forms of HIV long previously believed to be harmless actually interact with our immune systems and are actively monitored by a specific type of immune cell, called cytotoxic T cells.

In a report on the study, conducted on laboratory-grown human cells and published April 12 in the journal Cell Host and Microbe, the investigators say their experiments show that while defective HIV proviruses—the viral genetic material—cannot create functional infectious HIVs, a specific subset called "hypermutated" HIV proviruses creates proteins that cytotoxic T cells recognize as HIV.

HIV proviruses can outnumber functional HIV 1000 copies to one and the faulty proteins they create can complicate efforts to measure a patient's viral load, exhaust immune systems, shield functional HIV from attack by natural means or drugs, and seriously complicate the development of a cure. Researchers believe that if they can exploit the "hypermutated" form of these proviruses, it could help them eliminate more of the defective HIV proviruses and develop a cure for HIV infection.

"The virus has a lot of ways, even in its defective forms, to distract our immune systems, and understanding how they do this is essential in finding a cure," says Ya Chi Ho, M.D., Ph.D., instructor of medicine at the Johns Hopkins University School of Medicine, and the lead study investigator.

In the study, the scientists collected nine different defective HIV proviruses from six people infected with HIV, then transfected cultures of human with them in the laboratory. They grew and tested the transfected cells for markers of HIV proliferation—such as RNA and proteins—and found that all of them were capable of creating these components despite their mutations.

"The fact that defective proviruses can contribute to viral RNA and protein production is concerning, because it means that the measurements of HIV load in infected patients may not be as accurate as we thought. Part of the count is coming from defective viruses," says Ho.

After verifying that defective HIV proviruses created HIV proteins, the researchers then tested whether human immune system cells could biologically recognize and interact with those proteins. The group again transfected cells in the lab with 6 different types of defective HIV provirus taken from patients. In collaboration with Dr. R. Brad Jones, Ph.D., co-first author of the paper and assistant professor of microbiology, immunology and tropical medicine at the George Washington School of Medicine and Health Sciences, Ho's team matched cytotoxic T lymphocytes, the immune cells responsible for recognizing and destroying HIV, from the corresponding patient to the infected cells.

The researchers observed that cells containing a the "hypermutated" HIV can be recognized by an infected patient's cytotoxic T cells.

"If we identify and find a way to use the right , perhaps one of those expressed by the "hypermutated" HIV we found in this study, we could create a potent vaccine which could boost the enough to eliminate HIV altogether," says Ho.

However, defective HIV proviruses can distract the immune from attacking fully infectious normal HIV. "The cytotoxic T lymphocytes' ability to identify and target the real threat appears to be greatly impaired, because they may attack proteins from defective proviruses instead of the real thing," says Ho.

Ho believes that further information about the mutant proviruses could give scientists the tools to target them, get around them, and create a cure for HIV—a long elusive goal for virologists.

Explore further: Scientists discover that defective HIV DNA can encode HIV-related proteins

More information: Cell Host and Microbe (2017). www.cell.com/cell-host-microbe … 1931-3128(17)30118-X

Related Stories

Scientists discover that defective HIV DNA can encode HIV-related proteins

July 18, 2016
Investigators from the National Institutes of Health have discovered that cells from HIV-infected people whose virus is suppressed with treatment harbor defective HIV DNA that can nevertheless be transcribed into a template ...

Dormant copies of HIV mostly defective, new study shows

August 8, 2016
After fully sequencing the latent HIV "provirus" genomes from 19 people being treated for HIV, scientists at Johns Hopkins Medicine report that even in patients who start treatment very early, the only widely available method ...

NIH study describes new method for tracking T cells in HIV patients

February 3, 2014
A team of researchers has reported a novel method for tracking CD4+ T cells in people infected with HIV. CD4+ T cells are critical for immune defense against an array of pathogens and are a primary target of HIV. In the study, ...

New insight into leading viral cause of congenital birth defects

April 4, 2017
A study led by Cardiff University has revealed why CMV - a virus responsible for 1000 birth defects a year in the UK - is so adept at evading the immune system. The new findings could help in the development of treatments ...

Reservoir of hidden HIV larger than previously thought

October 24, 2013
In the fight to cure human immunodeficiency virus (HIV), researchers have been dealt a blow. A new study by Howard Hughes Medical Institute (HHMI) scientists discovered that the pool of inactive HIV viruses that lingers silently ...

Mouse model could shed new light on immune system response to Zika virus

February 23, 2017
A new mouse model with a working immune system could be used in laboratory research to improve understanding of Zika virus infection and aid development of new treatments, according to a study published in PLOS Pathogens.

Recommended for you

HIV exports viral protein in cellular packages

February 15, 2018
HIV may be able to affect cells it can't directly infect by packaging a key protein within the host's cellular mail and sending it out into the body, according to a new study out of a University of North Carolina Lineberger ...

Can gene therapy be harnessed to fight the AIDS virus?

February 13, 2018
For more than a decade, the strongest AIDS drugs could not fully control Matt Chappell's HIV infection. Now his body controls it by itself, and researchers are trying to perfect the gene editing that made this possible.

Big data methods applied to the fitness landscape of the HIV envelope protein

February 7, 2018
Despite significant advances in medicine, there is still no effective vaccine for the human immunodeficiency virus (HIV), although recent hope has emerged through the discovery of antibodies capable of neutralizing diverse ...

Scientists report big improvements in HIV vaccine production

February 5, 2018
Research on HIV over the past decade has led to many promising ideas for vaccines to prevent infection by the AIDS virus, but very few candidate vaccines have been tested in clinical trials. One reason for this is the technical ...

Microbiome research refines HIV risk for women

January 25, 2018
Drawing from data collected for years by AIDS researchers in six African nations, scientists have pinpointed seven bacterial species whose presence in high concentrations may significantly increase the risk of HIV infection ...

Researchers find latent HIV reservoirs inherently resistant to elimination by CD8+ T-cells

January 22, 2018
The latest "kick-and-kill" research to eliminate the HIV virus uncovered a potential obstacle in finding a cure. A recent study by researchers at the George Washington University (GW) found that latent HIV reservoirs show ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.