Team constructs whole-brain map of electrical connections key to forming memories

November 22, 2017
Credit: CC0 Public Domain

A team of neuroscientists at the University of Pennsylvania has constructed the first whole-brain map of electrical connectivity in the brain based on data from nearly 300 neurosurgical patients with electrodes implanted directly on the brain. The researchers found that low-frequency rhythms of brain activity, when brain waves move up and down slowly, primarily drive communication between the frontal, temporal and medial temporal lobes, key brain regions that engage during memory processing. 

The research, part of the Restoring Active Memory project, was conducted by Michael Kahana, Penn professor of psychology and principal investigator of the Defense Advanced Research Projects Agency's RAM program; Ethan Solomon, an M.D./Ph.D. student in the Department of Bioengineering; and Daniel Rizzuto, director of cognitive neuromodulation at Penn. They published their findings in Nature Communications

This work elucidates the way different regions of the communicate during cognitive processes like formation. Though many studies have examined brain networks using non-invasive tools like functional MRI, observations of large-scale networks using direct human-brain recordings have been difficult to secure because these data can only come from neurosurgical patients.

For several years, the Penn team gathered this information from multiple hospitals across the country, allowing the researchers to observe such electrical networks for the first time. Patients undergoing clinical monitoring for seizures performed a free-recall memory task that asked them to view a series of words on a screen, then repeat back as many as they could remember.

At the same time, the researchers examined occurring on slow and fast time scales, also called low- and high-frequency neural activity. They discovered that when a person is effectively creating new memories—in this case, remembering one of the presented words—alignment between tends to strengthen with slow waves of activity but weaken at higher frequencies. 

"We found," said Solomon, the paper's lead author, "that the low-frequency connectivity of a brain region was associated with increased neural activity at that site. This suggests that, for someone to form new memories, two functions must happen simultaneously: brain regions must individually process a stimulus, and then those regions must communicate with each other at low frequencies."

Areas of the brain identified in this paper—the frontal, temporal and —have long intrigued neuroscientists because of their crucial role in such memory functions.   

This work supports the RAM project goal of using brain stimulation to enhance memory.

"Better understanding the that activate during memory processing," Kahana said, "gives us a better ability to fine-tune electrical stimulation that might improve it. We're now prepared to ask whether we can use measures of functional connectivity to guide our choice of which brain to target with electrical stimulation. Ultimately, given the size of this dataset, these discoveries would not be possible without years of effort on the part of our participants, clinical teams and research scientists." 

Earlier this month, the RAM team publicly released its extensive intracranial brain recording and stimulation dataset that included thousands of hours of data from 250 patients performing memory tasks. Previous research showed for the first time that delivered when memory was predicted to fail could improve memory function in the human brain. That same stimulation generally became disruptive when electrical pulses arrived during periods of effective memory function.

Next, the Penn researchers plan to examine the interaction between brain stimulation and the functional connections the latest study uncovered.

"There's still significant work to do," Rizzuto said, "before we can use these connectivity maps to guide therapeutic for patients with memory disorders such as or Alzheimer's disease, but we're working toward that goal."

Explore further: Researchers show brain stimulation restores memory during lapses

Related Stories

Researchers show brain stimulation restores memory during lapses

April 20, 2017
A team of neuroscientists at the University of Pennsylvania has shown for the first time that electrical stimulation delivered when memory is predicted to fail can improve memory function in the human brain. That same stimulation ...

Neuroscientists improve human memory by electrically stimulating brain

October 25, 2017
Neuroscientists at the David Geffen School of Medicine at UCLA have discovered precisely where and how to electrically stimulate the human brain to enhance people's recollection of distinct memories. People with epilepsy ...

Brain implant tested in human patients found to improve memory recall

November 15, 2017
(Medical Xpress)—A team of researchers with the University of Southern California and the Wake Forest School of Medicine has conducted experiments involving implanting electrodes into the brains of human volunteers to see ...

New insights into how sleep helps the brain to reorganise itself

October 2, 2017
A study has given new insights into how sleep contributes to brain plasticity – the ability for our brain to change and reorganise itself – and could pave the way for new ways to help people with learning and memory disorders.

Baycrest launches study combining music and brain stimulation to improve memory

September 18, 2017
Baycrest will embark on the first study combining music therapy with brain stimulation to improve memory among patients with Mild Cognitive Impairment (MCI).

Study reveals promising new avenue to explore treatments for Alzheimer's disease

October 25, 2017
In an innovative study, researchers at the Centre for Addiction and Mental Health (CAMH) have discovered brain changes linked to memory loss in people with Alzheimer's disease. The discovery provides a new focus for exploring ...

Recommended for you

Study finds graspable objects grab attention more than images of objects do

December 15, 2017
Does having the potential to act upon an object have a unique influence on behavior and brain responses to the object? That is the question Jacqueline Snow, assistant professor of psychology at the University of Nevada, Reno, ...

Journaling inspires altruism through an attitude of gratitude

December 14, 2017
Gratitude does more than help maintain good health. New research at the University of Oregon finds that regularly noting feelings of gratitude in a journal leads to increased altruism.

Little understood cell helps mice see color

December 14, 2017
Researchers at the University of Colorado Anschutz Medical Campus have discovered that color vision in mice is far more complex than originally thought, opening the door to experiments that could potentially lead to new treatments ...

Scientists chart how brain signals connect to neurons

December 14, 2017
Scientists at Johns Hopkins have used supercomputers to create an atomic scale map that tracks how the signaling chemical glutamate binds to a neuron in the brain. The findings, say the scientists, shed light on the dynamic ...

Activating MSc glutamatergic neurons found to cause mice to eat less

December 13, 2017
(Medical Xpress)—A trio of researchers working at the State University of New York has found that artificially stimulating neurons that exist in the medial septal complex in mouse brains caused test mice to eat less. In ...

Gene mutation causes low sensitivity to pain

December 13, 2017
A UCL-led research team has identified a rare mutation that causes one family to have unusually low sensitivity to pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.