Alzheimer's damage in mice reduced with compound that targets APOE gene

December 6, 2017
Clumps of a damaging Alzheimer's protein (white spots) are scarcer in the brains of mice treated with a DNA-based compound (top) as compared with those given a placebo (bottom). The compound targets APOE4, a genetic variant that magnifies a person's risk of the disease. The findings suggest that targeting APOE could potentially prevent or delay onset of Alzheimer's. Credit: Tien-Phat Huynh

People who carry the APOE4 genetic variant face a substantial risk for developing Alzheimer's disease.

Now, researchers at Washington University School of Medicine in St. Louis have identified a compound that targets the APOE protein in the brains of and protects against damage induced by the Alzheimer's protein .

"Scientists have been interested in APOE for years but there are only a few examples where researchers have targeted it with a compound in living animals," said senior author David Holtzman, MD, the Andrew B. and Gretchen P. Jones Professor and head of the Department of Neurology. "Our findings indicate that APOE is not just involved in Alzheimer's risk and disease progression, but it could potentially be a real target for treatment or prevention."

The study is published Dec. 6 in the journal Neuron.

Alzheimer's, which affects one in 10 people over age 65, is marked by brain plaques made of a sticky protein known as amyloid beta. The plaques start forming in the brains of Alzheimer's patients years before the characteristic symptoms of memory loss and confusion appear. APOE4 raises the risk of Alzheimer's partly by encouraging amyloid beta to collect into damaging plaques.

Holtzman, first author and MD/PhD student Tien-Phat Huynh, and colleagues studied mice genetically prone to develop amyloid plaques and that carry the human APOE4 genetic variant. People with APOE4 face up to 12 times the risk of developing Alzheimer's than the general population.

The researchers targeted the APOE protein using a kind of DNA-based molecule created by co-author Tracy Cole, PhD, and others at Ionis Pharmaceuticals. The molecule - known as an antisense oligonucleotide - interferes with the instructions for building the APOE protein.

The researchers injected the compound into the fluid surrounding the brains of newborn mice. For comparison, they gave other newborn mice either saltwater or a placebo "oligo" that does not interfere with the APOE instructions. Levels of APOE protein dropped by about half in mice given the APOE compound as compared with those that received the placebo oligo or saltwater.

Two months later, the researchers gave the mice a booster dose of the treatment or the saltwater. They examined the mice's brains at 4 months old. By this time, the brains of such mice normally would be dotted with plaques and show widespread injury.

The mice that received the APOE antisense oligos had about half as many amyloid plaques as mice given saltwater. Each triggered only half as much damage to nearby neurons, an indicator that the compound had prevented some of the neurological damage that leads to Alzheimer's disease.

While the results are encouraging, more work is needed before the compound could be evaluated in people. Healthy young people with no signs of Alzheimer's are unlikely to be interested in taking a drug to prevent a disease that may never occur. The researchers therefore tested whether giving the APOE compound after appear could prevent further changes to the . For most people who one day will be diagnosed with Alzheimer's, plaques start forming in late adulthood. In these genetically modified mice, plaques first appear at about 6 weeks old.

The researchers introduced either the APOE compound or saltwater into the fluid surrounding the brains of 6-week old mice, and then examined the mice's brains at 4 months old. They found no difference in the number of plaques or the total amount of amyloid beta between the mice that received the compound and those given just saltwater. The compound failed to reduce the amount of amyloid in the mice's brains.

However, in the mice treated with the APOE compound, each plaque triggered only about half as much damage to the surrounding neurons, suggesting that even a late start could reduce the harm posed by amyloid beta.

"If you wanted to target APOE to affect the process, the best thing would be to start before the plaques form," Holtzman said. "But even if you start later, you still may reduce the amount of damage caused by the plaques. Now that we have shown that it is possible to target APOE, we can start figuring out the best way to do it."

Explore further: Newly ID'd role of major Alzheimer's gene suggests possible therapeutic target

More information: Neuron (2017). DOI: 10.1016/j.neuron.2017.11.014

Related Stories

Newly ID'd role of major Alzheimer's gene suggests possible therapeutic target

September 20, 2017
Nearly a quarter century ago, a genetic variant known as ApoE4 was identified as a major risk factor for Alzheimer's disease—one that increases a person's chances of developing the neurodegenerative disease by up to 12 ...

Malfunctioning protein a cause of Alzheimer's plaques

June 30, 2011
(Medical Xpress) -- In a new study published in Science Translational Medicine, scientists from the Washington University School of Medicine in St Louis reveal their discovery of a protein made by an Alzheimer’s gene ...

Protein linked to high risk of Alzheimer's can be removed from brain without hindering learning

October 4, 2016
A protein linked to higher risk of Alzheimer's can be removed from the brains of mice without hindering memory and learning, according to a study that addresses whether potential therapeutics targeting this protein would ...

Alzheimer's gene poses both risk and benefits

October 9, 2017
Scientists drilling down to the molecular roots of Alzheimer's disease have encountered a good news/bad news scenario. A major player is a gene called TREM2, mutations of which can substantially raise a person's risk of the ...

New perspective needed for role of major Alzheimer's gene

May 7, 2013
(Medical Xpress)—Scientists' picture of how a gene strongly linked to Alzheimer's disease harms the brain may have to be revised, researchers at Washington University School of Medicine in St. Louis have found.

Alzheimer's disease might be a 'whole body' problem

October 31, 2017
Alzheimer's disease, the leading cause of dementia, has long been assumed to originate in the brain. But research from the University of British Columbia and Chinese scientists indicates that it could be triggered by breakdowns ...

Recommended for you

Canola oil linked to worsened memory and learning ability in Alzheimer's

December 7, 2017
Canola oil is one of the most widely consumed vegetable oils in the world, yet surprisingly little is known about its effects on health. Now, a new study published online December 7 in the journal Scientific Reports by researchers ...

Genetics study suggests that education reduces risk of Alzheimer's disease

December 7, 2017
The theory that education protects against Alzheimer's disease has been given further weight by new research from the University of Cambridge, funded by the European Union. The study is published today in the BMJ.

Healthy mitochondria could stop Alzheimer's

December 6, 2017
Alzheimer's disease is the most common form of dementia and neurodegeneration worldwide. A major hallmark of the disease is the accumulation of toxic plaques in the brain, formed by the abnormal aggregation of a protein called ...

Alzheimer's damage in mice reduced with compound that targets APOE gene

December 6, 2017
People who carry the APOE4 genetic variant face a substantial risk for developing Alzheimer's disease.

Lithium in water associated with slower rate of Alzheimer's disease deaths

December 5, 2017
Rates of diabetes and obesity, which are important risk factors for Alzheimer's disease, also decrease if there is a particular amount of lithium in the water, says the study, published recently in the Journal of Alzheimer's ...

Hyperbaric oxygen therapy may alleviate symptoms of Alzheimer's Disease

December 5, 2017
A new Tel Aviv University study reveals that hyperbaric oxygen treatments may ameliorate symptoms experienced by patients with Alzheimer's disease.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.