Multiple sclerosis—cholesterol crystals prevent regeneration in central nervous system

January 5, 2018, Technical University Munich
Together with his team Prof. Mikael Simons researches the formation and removal of the myelin sheathes which surround nerve fibers and which are destroyed in Multiple Sclerosis. Credit: A. Eckert / TU

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system, in which the body's own immune cells attack the fatty, insulating myelin sheath surrounding nerve fibers. The regeneration of intact myelin sheaths is a necessary prerequisite for patients to recover from MS relapses. Nevertheless, the body's ability to regenerate myelin decreases with age.

A team led by Prof. Mikael Simons from the Technical University of Munich (TUM) has now published a possible explanation in the journal Science. Fat derived from myelin, which is not carried away rapidly enough by phagocytes, can trigger chronic inflammation that, in turn, impedes regeneration. Furthermore, in a second publication, Simons' team describes the discovery of novel cell type, which appears only when a myelin sheath is being created.

The myelin sheath plays a decisive role in the function of the central nervous system. It is a specialized membrane enriched in lipids, which insulates so that electrical signals can be passed on quickly and efficiently. In MS, there is a multifocal autoimmune attack against the in the central nervous system, which causes neurological deficits such as loss of motor function. Regeneration of myelin is possible, but in MS it is inadequate.

One of the reasons is presumably chronic inflammation occurring in the lesions. A team led by TUM Molecular Neurobiology professor Mikael Simons has now discovered that after the destruction of myelin crystalline can trigger persistent inflammation which prevents regeneration, similar as in arteriosclerosis.

Dangerous crystals

"Myelin contains a very high amount of cholesterol," explains Prof. Simons. "When myelin is destroyed, the cholesterol released has to be removed from the tissue." This is performed by microglia and macrophages, also referred to as phagocytes. They take up the damaged myelin, digest it and transport the non-digestible remainder, such as cholesterol, out of the cell by transport molecules. However, if too much cholesterol accumulates in the cell, cholesterol can form needle-shaped crystals, which cause damage the cell. Using a mouse model, Simons and his team showed the devastating impact of the crystalline cholesterol. It activates the so-called inflammasome in phagocytes, which results in the release of inflammatory mediators, attracting even more . "Very similar problems occur in arteriosclerosis, however not in the brain tissue, but in blood vessels," says Simons.

How well the microglia and macrophages did their job was ultimately also dependent on the age of the animal. The older the animal, the less effective the clearance of cholesterol and the stronger the . "When we treated the animals with a medication that facilitates the transport of cholesterol out of the , inflammation decreased and myelin was regenerated," says Mikael Simons. Next, he and his team want to investigate whether this mechanism can be used therapeutically to promote regeneration in MS.

Newly discovered cells indicate regeneration

A crucial prerequisite for the development of therapies that promote repair is a better understanding of myelin formation. In another study, recently published in the journal Science Translational Medicine and led by Prof. Simons and Prof. Christine Stadelmann of the University of Göttingen's Institute of Neuropathology, provides important new insights into this process. The scientists discovered a novel oligodendroglial cell type. Oligodendrocytes are specialized glial cells that are responsible for myelination in the central nervous system.

"We believe that the BCAS1-positive oligodendrocytes that we discovered represent an intermediate stage in the development of myelin-forming cells. In humans they can only be identified for a relatively short period of time, exactly then when myelin is actually being formed," says Mikael Simons. In the human brain, for example, they are found in newborns, which generate myelin at high rate. In adults, these cells disappear, but they can be re-formed when myelin has been damaged and needs to be regenerated.

"We hope that the BCAS1 positive cells will help us to identify new regenerative medicines," says Mikael Simons. Researchers can now rapidly screen for drugs that promote the formation of these cells, he adds. Furthermore, they could be used to get a better understanding of exactly when and how is created during the course of a human life, he says.

Explore further: Cellular self-digestion process triggers autoimmune disease

More information: Ludovico Cantuti-Castelvetri et al, Defective cholesterol clearance limits remyelination in the aged central nervous system, Science (2018). DOI: 10.1126/science.aan4183

Related Stories

Cellular self-digestion process triggers autoimmune disease

December 13, 2017
Autophagy refers to a fundamental recycling process of cells that occurs in yeast, fungi, plants, as well as animals and humans. This process allows cells to degrade their own components and thus activate energy resources ...

Blood-clotting protein prevents repair in the brain

November 2, 2017
Picture a bare wire, without its regular plastic coating. It's exposed to the elements and risks being degraded. And, without insulation, it may not conduct electricity as well as a coated wire. Now, imagine this wire is ...

A little myelin goes a long way to restore nervous system function

October 24, 2017
In the central nervous system of humans and all other mammals, a vital insulating sheath composed of lipids and proteins around nerve fibers helps speed the electrical signals or nerve impulses that direct our bodies to walk, ...

Damaged nerve cells communicate with stem cells

October 7, 2015
Nerve cells damaged in diseases such as multiple sclerosis (MS), 'talk' to stem cells in the same way that they communicate with other nerve cells, calling out for 'first aid', according to new research from the University ...

A supplement for myelin regeneration

December 7, 2015
Multiple sclerosis patients continually lose the insulating myelin sheath that wraps around neurons and increases the speed of impulses in the central nervous system. Whenever neurons are demyelinated, OPCs migrate toward ...

Enzyme in myelination process could lead to better understanding of neurological disorders

April 14, 2016
The removal of the enzyme Dnmt1 during oligodendrocyte progenitor cell (OPC) differentiation in the central nervous system resulted in inefficient myelin formation and neurological deterioration, including loss of control ...

Recommended for you

Parents' brain activity 'echoes' their infant's brain activity when they play together

December 13, 2018
When infants are playing with objects, their early attempts to pay attention to things are accompanied by bursts of high-frequency activity in their brain. But what happens when parents play together with them? New research, ...

Researchers discover abundant source for neuronal cells

December 13, 2018
USC researchers seeking a way to study genetic activity associated with psychiatric disorders have discovered an abundant source of human cells—the nose.

In the developing brain, scientists find roots of neuropsychiatric diseases

December 13, 2018
The most comprehensive genomic analysis of the human brain ever undertaken has revealed new insights into the changes it undergoes through development, how it varies among individuals, and the roots of neuropsychiatric illnesses ...

Researchers find the cause of and cure for brain injury associated with gut condition

December 13, 2018
Using a mouse model of necrotizing enterocolitis (NEC)—a potentially fatal condition that causes a premature infant's gut to suddenly die—researchers at Johns Hopkins say they have uncovered the molecular causes of the ...

How the brain tells you to scratch that itch

December 13, 2018
It's a maddening cycle that has affected us all: it starts with an itch that triggers scratching, but scratching only makes the itchiness worse. Now, researchers have revealed the brain mechanism driving this uncontrollable ...

Researchers identify pathway that drives sustained pain following injury

December 13, 2018
A toddler puts her hand on a hot stove and swiftly withdraws it. Alas, it's too late—the child's finger has sustained a minor burn. To soothe the pain, she puts the burned finger in her mouth.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.