Extracellular vesicles could be personalized drug delivery vehicles

March 12, 2018, Pennsylvania State University
Ligands-grafted extracellular vesicles as drug delivery vehicles. Credit: Xin Zou

Creating enough nanovesicles to inexpensively serve as a drug delivery system may be as simple as putting the cells through a sieve, according to an international team of researchers who used mouse autologous—their own—immune cells to create large amounts of fillable nanovesicles to deliver drugs to tumors in mice.

Nanovesicles are tiny sacs released by cells that carry chemical messages between cells. These nanovesicles are natural delivery vehicle and useful in for .

"Currently, natural nanovesicles can be harvested from cell culture supernatant (the fluid surrounding cultured cells) and they are fillable," said Yuan Wan, postdoctoral fellow in , Penn State. "However, there are two problems using them for cancer treatment. There aren't enough nanovesicles produced in short timescales and they do not have targeting effect."

The researchers developed an approach and platform to create large amounts of fillable and targeted nanovesicles. They report their results in a recent issue of Cancer Research.

To create targeted nanovesicles, ligands—perhaps short pieces of protein—need to be attached to the nanovesicle wall so they can recognize . The process for making targeted nanovesicles now requires using viruses to insert relevant DNA fragments into the genome of the and then collecting ligand-bearing nanovesicles released from the gene-modified cells.

Yuan, working with Si-Yang Zheng, associated professor of biomedical engineering, developed a simpler and faster method for attaching ligands. The researchers chemically graft the lipid-tagged ligands onto the cell membrane. They do this before they pass the cells through a sieve, which converts the cell membranes into millions of vesicles bearing ligands that can be filled with an appropriate drug to target the cancer.

"Pushing the cells through a filter is the engineered way to produce lots of nanovesicles," said Zheng.

The researchers used mouse autologous immune cells and created the ligand-targeted, fillable nanovesicles in the laboratory. They then infused these drug-loaded nanovesicles into the original mouse to treat tumors.

"This approach enables us to create nanovesicles with different ligands targeting different types of tumors in about 30 minutes to meet actual needs," said Zheng. "With this approach, we also can put different types of ligands on a nanovesicle. We could have one ligand that targets while another ligand says, 'don't eat me.'"

Zheng is referring to the body's propensity to clear materials that do not belong from the blood stream. If a nanovesicle has a attached that suggests the vesicle is autologous, then the vesicle, and its drug payload, might remain in circulation longer, making it more successful in finding and killing the target cancer cells.

The researchers believe that a variety of other cells, including , T cells—cells of the immune system—and other cell types could be modified and used as donor for extrusion of nanovesicles.

Explore further: 'Decorated' stem cells could offer targeted heart repair

Related Stories

'Decorated' stem cells could offer targeted heart repair

January 10, 2018
Although cardiac stem cell therapy is a promising treatment for heart attack patients, directing the cells to the site of an injury - and getting them to stay there - remains challenging. In a new pilot study using an animal ...

Tiny 'garbage collectors' help control brain development

February 19, 2014
(Medical Xpress)—Millions of tiny nanovesicles—once thought to be merely molecular garbage collectors—are actually stuffed with information crucial to brain development, Yale researchers report.

Researchers discover biomarker, potential targeted therapy for pancreatic cancer

October 4, 2013
University of Cincinnati (UC) researchers have discovered a biomarker, known as phosphatidylserine (PS), for pancreatic cancer that could be effectively targeted, creating a potential therapy for a condition that has a small ...

Recommended for you

Some brain tumors may respond to immunotherapy, new study suggests

December 10, 2018
Immunotherapy has proved effective in treating a number of cancers, but brain tumors have remained stubbornly resistant. Now, a new study suggests that a slow-growing brain tumor arising in patients affected by neurofibromatosis ...

Study finds higher risk of breast cancer for women after giving birth

December 10, 2018
Younger women who have recently had a child may have a higher risk of breast cancer than their peers of the same age who do not have children, according to a large-scale analysis co-led by a University of North Carolina Lineberger ...

A code for reprogramming immune sentinels

December 10, 2018
For the first time, a research team at Lund University in Sweden has successfully reprogrammed mouse and human skin cells into immune cells called dendritic cells. The process is quick and effective, representing a pioneering ...

Researchers develop personalized medicine tool for inherited colorectal cancer syndrome

December 10, 2018
An international team of researchers led by Huntsman Cancer Institute (HCI) at the University of Utah (U of U) has developed, calibrated, and validated a novel tool for identifying the genetic changes in Lynch syndrome genes ...

Study shows key enzyme linked to therapy resistance in deadly lung cancer

December 10, 2018
Researchers at The University of Texas MD Anderson Cancer Center have identified a link between an enzyme tied to cancer formation and therapy resistance in patients with epidermal growth factor receptor (EGFR)-mutant non-small ...

Potential seen for tailoring treatment for acute myeloid leukemia

December 8, 2018
Advances in rapid screening of leukemia cells for drug susceptibility and resistance are bringing scientists closer to patient-tailored treatment for acute myeloid leukemia (AML).

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.