Tissue-engineered human pancreatic cells successfully treat diabetic mice

May 8, 2018, Cincinnati Children's Hospital Medical Center
Vascularized pancreatic islets (areas in green) bioengineered by researchers and transplanted into a mouse. The bioengineered islets -- which have a network of blood vessels (shown in red) and secrete hormones like insulin -- are shown seven days after transplant. Scientists reporting research data in Cell Reports say their goal is to one day translate the bioengineering process used to generate and transplant mouse pancreatic islets to human patients with diabetes. Credit: Cincinnati Children's

Researchers tissue-engineered human pancreatic islets in a laboratory that develop a circulatory system, secrete hormones like insulin and successfully treat sudden-onset type 1 diabetes in transplanted mice.

In a study published by Cell Reports, the scientists use a new bioengineering process they developed called a self-condensation cell culture. The technology helps nudge medical science closer to one day growing human organ tissues from a person's own cells for regenerative therapy, say study investigators at Cincinnati Children's Hospital Medical Center in the U.S. and Yokohama City University (YCU) in Japan.

"This method may serve as a principal curative strategy for treating type 1 diabetes, of which there are 79,000 new diagnoses per year," said Takanori Takebe, MD, a physician-scientist at the Cincinnati Children's Center for Stem Cell and Organoid Medicine. "This is a life-threatening disease that never goes away, so developing effective and possibly permanent therapeutic approaches would help millions of children and adults around the world."

Takebe, who has a dual appointment in the Department of Regenerative Medicine at YCU, stressed the technology needs additional research before it can be used therapeutically in a clinic. He is the study's co-lead investigator along with YCU colleague, Hideki Taniguchi, MD, PhD.

Getting out of Nature's Way

Scientists tested their processing system with donated human organ cells (pancreas, heart, brain, etc.), with mouse organ cells and with induced (iPS). Reprogrammed from a person's (like ), iPS cells act like and can form any tissue type in the body.

The tissue-engineering process also uses two types of embryonic-stage progenitor cells, which support formation of the body and its specific organs. The progenitor cells are (MSNs) and human umbilical (HUVECs).

Using either donated organ cells, or iPS cells, the researchers combined these with MSNs, HUVECs along with other genetic and biochemical material that cue the formation of pancreatic islets. In conditions that nourish and nurture the cells, the ingredients condensed and self-organized into pancreatic islets.

After the tissue-engineered islets were transplanted into humanized mouse models of severe type 1 diabetes, they resolved the animals' disease, report researchers.

Blood Source Challenge

Human pancreatic islets already can be transplanted into diabetic patients for treatment. Unfortunately, the engraftment success rate is relatively low because the tissues lose their vascularization and blood supply as islets are being processed before transplant. This makes it difficult to get the maximum health benefit for patients getting these procedures, the authors write.

And although stem cell-based tissue engineering has tremendous therapeutic potential, its future clinical use still faces the critical challenge of ensuring a blood supply to nourish the transplanted tissues, according to researchers.

"We need a strategy that ensures successful engraftment through the timely development of vascular networks," said Taniguchi. "We demonstrate in this study that the self-condensation cell culturing system promotes tissue vascularization."

Pancreatic islets tissue-engineered in the current generated by the process not only quickly developed a vascular network after transplant into animal models of type 1 diabetes, the tissues also functioned efficiently as part of the endocrine system—secreting hormones like insulin and stabilizing glycemic control in the animals.

Takebe's and Taniguchi's research team already demonstrated the ability to use a "self-condensation" cell culture process using iPS to tissue engineer three-dimensional human liver organoids that can vascularize after transplant into laboratory mice. But the ability to generate organ fragments that vascularize in the body—like —had been an elusive goal until the current study, investigators said.

Explore further: Unique pancreatic stem cells have potential to regenerate beta cells, respond to glucose

More information: Cell Reports (2018). DOI: 10.1016/j.celrep.2018.03.123

Related Stories

Unique pancreatic stem cells have potential to regenerate beta cells, respond to glucose

February 27, 2018
Scientists from the Diabetes Research Institute at the University of Miami Miller School of Medicine have confirmed the existence of progenitor cells within the human pancreas that can be stimulated to develop into glucose-responsive ...

Human 'glucostat' identified

March 7, 2018
Pancreatic islets have the overall responsibility for maintaining normal blood glucose levels in the body, according to a new study by researchers at Karolinska Institutet in Sweden and the University of Miami Miller School ...

Research could treat Type I Diabetes by engineering pancreatic islets outside the body

August 23, 2017
Tiny packets of cells called islets throughout the pancreas allow the organ to produce insulin. Type 1 diabetes—also known as juvenile diabetes - tricks the immune system into destroying these islets. Patients must take ...

Search for genetically stable bioengineered gut and liver tissue takes step forward

February 8, 2018
Before medical science can bioengineer human organs in a lab for therapeutic use, two remaining hurdles are ensuring genetic stability—so the organs are free from the risk of tumor growth—and producing organ tissues of ...

The relevance of GABA for diabetes highlighted in two new studies

April 5, 2018
Dynamic interactions between the nervous system, hormones and the immune system are normally ongoing, but in diabetes the balance is disturbed. Two studies published in EBioMedicine by an international research team from ...

Engineered pancreatic tissues could lead to better transplants for diabetics

August 15, 2012
Technion researchers have built pancreatic tissue with insulin-secreting cells, surrounded by a three-dimensional network of blood vessels. The engineered tissue could pave the way for improved tissue transplants to treat ...

Recommended for you

Scientists reverse aging-associated skin wrinkles and hair loss in a mouse model

July 20, 2018
Wrinkled skin and hair loss are hallmarks of aging. What if they could be reversed?

Breakthrough could impact cancer, ageing and heart disease

July 20, 2018
A team of Sydney scientists has made a groundbreaking discovery in telomere biology, with implications for conditions ranging from cancer to ageing and heart disease. The research project was led by Dr. Tony Cesare, Head ...

Enzyme identified as possible novel drug target for sickle cell disease, Thalassemia

July 19, 2018
Medical researchers have identified a key signaling protein that regulates hemoglobin production in red blood cells, offering a possible target for a future innovative drug to treat sickle cell disease (SCD). Experiments ...

Mice given metabolite succinate found to lose weight by turning up the heat

July 19, 2018
A team of researchers with members from institutions across the U.S. and Canada has found that giving the metabolite succinate to mice fed a high-fat diet prevented obesity. In their paper published in the journal Nature, ...

Supplement may ease the pain of sickle cell disease

July 19, 2018
(HealthDay)—An FDA-approved supplement reduces episodes of severe pain in people with sickle cell disease, a new clinical trial shows.

Scientists uncover DNA 'shield' with crucial roles in normal cell division

July 18, 2018
Scientists have made a major discovery about how cells repair broken strands of DNA that could have huge implications for the treatment of cancer.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.