New cancer immunotherapy shows promise in early tests

July 2, 2018, University of Massachusetts Amherst
Confocal microscopy image shows macrophages (red) engulfing cancer cells (green). Credit: Ashish Kulkarni, Brigham and Women's Hospital

Much cancer immunotherapy research has focused on harnessing the immune system's T cells to fight tumors, "but we knew that other types of immune cells could be important in fighting cancer too," says Ashish Kulkarni at the University of Massachusetts Amherst. Now he and colleagues at Brigham and Women's Hospital, with others, report that in preclinical models they can amplify macrophage immune responses against cancer using a self-assembling supramolecule.

As , usually eat foreign invaders including pathogens, bacteria and even cancer cells, Kulkarni explains, but one of the two types do not always do so. Macrophage type M1s are anti-tumorigenic, but M2s can be recruited by to help them grow. Also, tumor cells overexpress a protein that tells the macrophages, "don't eat me." In this way, pro-tumorigenic macrophages may make up 30 to 50 percent of a tumor's mass, says the biomedical engineer and lead author of the new study.

Kulkarni adds, "With our technique, we're re-programming the M2s into M1s by inhibiting the M2 signaling pathway. We realized that if we can re-educate the macrophages and inhibit the 'don't eat me' protein, we could tip the balance between the M1s and M2s, increasing the ratio of M1s inside the tumor and inhibiting tumor growth." Details appear in the current online issue of Nature Biomedical Engineering.

To address both the M2 "re-education" problem and to enhance the macrophages' capacity to eat tumor cells, the researchers used what they call a bi-functional or "one-two punch," says Kulkarni. He and research technician Anujan Ramesh, with colleagues in India and at Harvard Medical School's Brigham and Women's Hospital, used a multi-component supramolecular system that self-organizes at the nanoscale to deliver an antibody inhibitor plus a drug inside the tumor. "This is the first time anyone has combined these two, a drug that targets M2 macrophages and an antibody that inhibits 'don't eat me signal,' in one delivery system," Kulkarni notes.

He adds, "We feel this new approach provides a complementary one that can be used along with other therapies. We tested it in melanoma and breast cancer , two aggressive cancers, and we plan to try it on different types of cancer and in combination with other current therapies like T-cell-based therapies now used in clinics."

The researchers tested the supramolecular therapeutic in animal models of the two forms of cancer, comparing it directly with a drug currently available in the clinic. Mice that were untreated formed large tumors by Day 10, they report. Mice treated with currently available therapies showed decreased growth. But mice treated with the new supramolecular therapy had complete inhibition of . The team also reported an increase in survival and a significant reduction in metastatic nodes.

Co-author Shiladitya Sengupta at Brigham and Women's Hospital says, "We can actually see macrophages eating ," citing confocal microscopy images in the paper that show macrophages engulfing .

Kulkarni says next steps are to continue testing the new therapy in preclinical models to evaluate safety, efficacy and dosage. The supramolecular therapy they have designed has been licensed and they hope to move the therapeutic into clinical trials if preclinical testing continue to show promise.

Explore further: Removing the enablers: Reducing number of tumor-supporting cells to fight neuroblastoma

More information: Ashish Kulkarni et al, A designer self-assembled supramolecule amplifies macrophage immune responses against aggressive cancer, Nature Biomedical Engineering (2018). DOI: 10.1038/s41551-018-0254-6

Related Stories

Removing the enablers: Reducing number of tumor-supporting cells to fight neuroblastoma

April 24, 2018
Investigators at the Children's Center for Cancer and Blood Diseases at Children's Hospital Los Angeles provide preclinical evidence that the presence of tumor-associated macrophages—a type of immune cell—can negatively ...

Drug combination overcomes barrier to effective melanoma immunotherapy

April 12, 2018
Immunotherapies are treatments that stimulate a patient's immune cells to attack tumors. They can be very effective in melanoma—a common and aggressive form of skin tumor—but nonetheless fail in the majority of patients. ...

Study reveals new mechanism used by cancer cells to disarm attacking immune cells

November 20, 2017
A new study by researchers at The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute (OSUCCC - James) identifies a substance released by pancreatic cancer cells that protects ...

Uncovering the mechanisms that support the spread of ovarian cancer

October 10, 2016
A very high mortality rate is associated with ovarian cancer, in part due to difficulties in detecting and diagnosing the disease at early stages before tumors have spread, or metastasized, to other locations in the body.

Second 'don't eat me' signal found on cancer cells

November 27, 2017
A second biological pathway that signals immune cells not to engulf and kill cancer cells has been identified by researchers at the Stanford University School of Medicine.

Novel compound that engages 'second arm' of immune system reduces breast tumors and metastases

March 8, 2017
For all the success of a new generation of immunotherapies for cancer, they often leave an entire branch of the immune system's disease-fighting forces untapped. Such therapies act on the adaptive immune system, the ranks ...

Recommended for you

Discovery of kidney cancer driver could lead to new treatment strategy

July 19, 2018
University of North Carolina Lineberger Comprehensive Cancer Center scientists have uncovered a potential therapeutic target for kidney cancers that have a common genetic change. Scientists have known this genetic change ...

High fruit and vegetable consumption may reduce risk of breast cancer, especially aggressive tumors

July 19, 2018
Women who eat a high amount of fruits and vegetables each day may have a lower risk of breast cancer, especially of aggressive tumors, than those who eat fewer fruits and vegetables, according to a new study led by researchers ...

Sunscreen reduces melanoma risk by 40 per cent in young people

July 19, 2018
A world-first study led by University of Sydney has found that Australians aged 18-40 years who were regular users of sunscreen in childhood reduced their risk of developing melanoma by 40 percent, compared to those who rarely ...

Analysis of prostate tumors reveals clues to cancer's aggressiveness

July 19, 2018
Using genetic sequencing, scientists have revealed the complete DNA makeup of more than 100 aggressive prostate tumors, pinpointing important genetic errors these deadly tumors have in common. The study lays the foundation ...

Complementary medicine for cancer can decrease survival

July 19, 2018
People who received complementary therapy for curable cancers were more likely to refuse at least one component of their conventional cancer treatment, and were more likely to die as a result, according to researchers from ...

Overcoming resistance to a standard chemotherapy drug

July 19, 2018
Despite being studied for decades, the chemotherapy drug cisplatin is revealing new aspects of how it works. Researchers at Winship Cancer Institute of Emory University have identified an enzyme responsible for making tumors ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.