Non-opioid drug relieves pain in mice, targets immune cells

July 5, 2018, Washington University School of Medicine
In skin biopsies from the legs of healthy people (left) there are abundant sensory nerve fibers (green) but few macrophages (red). Meanwhile, in biopsies from patients with pain due to diabetic neuropathy (right), macrophages (red) surround degenerating nerve fibers (green). Credit: Mohopatra lab

Faced with the epidemic of opioid addiction, researchers have been charged with finding other strategies to treat pain. Their efforts largely have focused on nerve cells that transmit pain signals to the spinal cord and brain. But new research, led by scientists at Washington University School of Medicine in St. Louis, shows that targeting receptors on immune cells may be more effective, particularly for chronic pain.

Recently, a non-opioid, investigational drug called EMA401 has shown promise as a treatment for lingering pain following shingles infection. While trying to understand how that drug helped control pain, the Washington University research team was surprised to find that it doesn't hit nerve cells; rather, it targets a receptor on immune cells.

Their findings are published July 2 in The Journal of Neuroscience.

"We are in dire need of good pain-killing drugs, particularly non-opioid drugs," said principal investigator D.P. Mohapatra, Ph.D., an associate professor in anesthesiology. "Generally, scientists have the understanding that targets for treating pain must be within the nervous system. It turns out that the target here is not on nerve cells, but on immune cells called macrophages."

The investigational drug inhibits the angiotensin II type 2 receptor that is targeted by medications that lower blood pressure. Angiotensin is a hormone that causes blood vessels to constrict, increasing blood pressure.

This drug was thought to work by interacting with the type 2 receptor on nerve cells—the same cells that carry . But when Mohapatra and his colleagues at the Washington University Pain Center looked more closely, they found that theory was wrong.

Credit: Washington University BioMed Radio

"When we took nerve cells from mice, put them in a culture dish and added the angiotensin hormone, nothing happened," said co-investigator Andrew Shepherd, Ph.D., an instructor in anesthesiology. "There was no angiotensin type 2 receptor on sensory neurons, so pain signals couldn't be transmitted."

But in other experiments in which they injected the angiotensin hormone into mice, the animals indicated they felt pain and withdrew their paws when touched.

"We found that the receptor the drug affected wasn't on the nerve cells; it was on macrophages, the immune cells," Shepherd said. "When we added macrophages to the dish alongside the nerve , the angiotensin could 'talk' to the macrophages, and then the macrophages 'talked' to the , which then transmitted pain signals."

When the researchers reduced the number of macrophages in mice, the animals didn't appear to feel pain in response to an injection. But as the macrophages repopulated over the course of a few days, the response to pain returned. To support these observations in mice and the culture dish, the researchers also have found increased numbers of macrophages alongside degenerating nerve fibers in skin biopsies taken from the legs of patients who have diabetic neuropathy.

Increasing the number of potential targets for painkillers and including targets such as on may make it possible to develop more effective painkilling drugs with fewer side effects, Mohapatra said.

"The beauty of this is that, unlike an opioid, it doesn't cross the blood-brain barrier, so right away you eliminate a number of potentially harmful side effects, including addiction and the potential for abuse," he said. "And by widening the scope of potential targets to macrophages, it may be possible to develop more effective therapies for chronic, neuropathic ."

Explore further: Saving aging nerves from 'big eater' immune cells

More information: Shepherd AJ, et al. Angiotensin II triggers peripheral macrophage-to-sensory neuron redox crosstalk to elicit pain. The Journal of Neuroscience, July 2, 2018.

Related Stories

Saving aging nerves from 'big eater' immune cells

April 30, 2018
Immune cells may contribute to weakness and mobility issues in the elderly by driving nerve degeneration, according to a study of aging mice and biopsies of human nerves published in JNeurosci. In mice, blocking a receptor ...

Chemotherapy-induced diarrhea traced to immune cells

June 26, 2018
Some 50 to 80 percent of cancer patients taking powerful chemotherapy drugs develop diarrhea, which can be severe and in some cases life-threatening. Their problems occur when contractions in the smooth muscle lining the ...

Scientists develop new method that uses light to manage neuropathic pain in mice

April 24, 2018
For patients with neuropathic pain, a chronic condition affecting 7 to 8 percent of the European population, extreme pain and sensitivity are a daily reality. There is currently no effective treatment. Scientists from EMBL ...

Scientists make white blood cells to alleviate pain during tissue inflammation in mice

February 5, 2018
Researchers at the University of Granada led a novel study in mice that shows that sigma‑1 receptor blockers cause white blood cells or leukocytes to relieve pain when a tissue is inflamed

Alternative, non-opioid treatments for chronic pain

March 30, 2018
An estimated 2 million people in the U.S. are addicted to prescription opioids—powerful doctor-prescribed medications for chronic or severe pain. The drugs are commonly prescribed to treat gastrointestinal pain caused by ...

Opioids produce analgesia via immune cells

January 17, 2017
Opioids are the most powerful painkillers. Researchers at the Charité - Universitätsmedizin Berlin have now found that the analgesic effects of opioids are not exclusively mediated by opioid receptors in the brain, but ...

Recommended for you

Overlooked signal in MRI scans reflects amount, kind of brain cells

September 24, 2018
An MRI scan often generates an ocean of data, most of which is never used. When overlooked data is analyzed using a new technique developed at Washington University School of Medicine in St. Louis, they surprisingly reveal ...

Even mild physical activity immediately improves memory function, study finds

September 24, 2018
People who include a little yoga or tai chi in their day may be more likely to remember where they put their keys. Researchers at the University of California, Irvine and Japan's University of Tsukuba found that even very ...

Thousands of unknown DNA changes in the developing brain revealed by machine learning

September 24, 2018
Unlike most cells in the rest of our body, the DNA (the genome) in each of our brain cells is not the same: it varies from cell to cell, caused by somatic changes. This could explain many mysteries—from the cause of Alzheimer's ...

Implant helps paralysed man walk again

September 24, 2018
Five years after he was paralysed in a snowmobile accident, a man in the US has learned to walk again aided by an electrical implant, in a potential breakthrough for spinal injury sufferers.

Common painkiller not effective for chronic pain after traumatic nerve injury

September 24, 2018
A new study out today in the Journal of Neurology finds that pregabalin is not effective in controlling the chronic pain that sometimes develops following traumatic nerve injury. The results of the international study, which ...

Study of protein 'trafficker' provides insight into autism and other brain disorders

September 22, 2018
In the brain, as in business, connections are everything. To maintain cellular associates, the outer surface of a neuron, its membrane, must express particular proteins—proverbial hands that reach out and greet nearby cells. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.