Separated entry and exit doors for calcium keep energy production smooth in the powerhouses of heart cells

September 18, 2018, Thomas Jefferson University
Mitochondria. Credit: Wikipedia commons

Stress demands the heart to work harder and faster. To keep pace, the muscle must make its fuel at an accelerated rate. Bursts of calcium entering mitochondria—the cell's powerhouses—normally help control energy output, but too much calcium can overload the system and lead to cell death. Now research led by Jefferson (Philadelphia University + Thomas Jefferson University) scientist Gyorgy Csordas shows how mitochondria manage the flow of calcium to keep the engine running smoothly.

"What really matters is if there is a stress," said Dr. Csordas, MD, an Associate Professor at the MitoCare Center within the department of Pathology, Anatomy and Cell Biology at the Sidney Kimmel Medical College at Jefferson. "Your heart is going to work harder, so it takes more ."

When it comes to , are a bit like Goldilocks—too much calcium triggers a series of events that result in cellular suicide, but too little impairs the ability of the conveyor belt of reactions that pump out ATP, the cell's fuel. Since the heart muscle needs ATP to contract, mitochondria must constantly replenish the heart's energy stores. That means mitochondria need just the right amount of calcium to keep the energy factory humming along.

A rush of calcium to mitochondria also helps the heart tolerate stress. An accelerated heart rate triggers more calcium to flood the mitochondria. The mitochondria in turn produce more ATP to allow the heart to respond to the stress.

"We wanted to figure out how this finely tuned system operates," said Dr. Csordas, who published the work on September 18, 2018 in the journal Cell Reports with first author Sergio De La Feuente, Ph.D., a postdoctoral fellow in Csordas' lab.

To manage how much calcium enters its chambers, mitochondria have one-way doors called mitochondrial calcium uniporter channel complexes (MCUCs) that control access. To keep from overloading mitochondria with calcium, the doors remain sealed most of the time; they only open when enough calcium is nearby to unlock them,but calcium needs a door by which to exit as well to keep levels safe.

In previous research, Csordas' team found the MCUCs cluster together in hotspots on mitochondria, strategically positioned near where the heart's dedicated calcium store, called the sarcoplasmic reticulum (SR), touches the mitochondria. It was less clear, however, where the calcium exit doors were located.

Researchers knew that calcium exits mitochondria by way of a revolving door, a transport protein called NCLX. To find out where the calcium exit doors are on mitochondria, researchers broke up heart cells from male mice and rats and probed for different parts of the cell. They found MCUC entry doors alongside the SR calcium store, as they expected, but exit proteins were almost entirely absent. Instead, the team found the exit doors were abundant only in areas with little to no SR contact, far from the entrances.

The discovery made sense to Dr. Csordas. "If calcium entrance and exits were too close together, some of the calcium could come in and go out without doing anything," he said. That would still cost the mitochondrion energy since calcium entry and exit through these doors both require a basic energy investment from the mitochondrion. "Such an outcome would leave the cell without the appropriate demand signal to make energy," he said.

Indeed, the researchers found that inserting exit doors close to MCUC entrances cost the mitochondria more energy.

Together the position of the calcium entrances and exits allow mitochondria to operate at maximum efficiency even when stressed.

"This is the first or one of the first examples showing the driving effect of the inter-organelle contact on the distribution of mitochondrial transporters," Dr. Csordas said.

Explore further: Sarcolipin tricks muscle cells into using more energy, burning fat

More information: Sergio De La Fuente et al, Spatial Separation of Mitochondrial Calcium Uptake and Extrusion for Energy-Efficient Mitochondrial Calcium Signaling in the Heart, Cell Reports (2018). DOI: 10.1016/j.celrep.2018.08.040

Related Stories

Sarcolipin tricks muscle cells into using more energy, burning fat

September 11, 2018
Ever wonder why you burn fat and heat up when you exercise or shiver? Now, researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) have shown that sarcolipin, a small peptide only found in muscles, increases ...

Controlling energy production by calcium is an organ-specific affair

March 7, 2017
A heart beat begins with a rush of calcium into the heart cell followed by a burst of energy from the resident mitochondria. These two events occur with each beat. Yet these events are not confined to heart cells and in fact ...

Stress pushes cells to die when gatekeeper of calcium use in mitochondria is dysfunctional

March 9, 2016
Malfunctioning mitochondria—the power plants in cells—are behind the damage caused by strokes, heart attacks, and neurodegenerative diseases, but little has been known about how to stop these reactors from melting down, ...

Inhibiting CaMKII enzyme activity could lead to new therapies for heart disease

October 11, 2012
University of Iowa researchers have previously shown that an enzyme called CaM kinase II plays a pivotal role in the death of heart cells following a heart attack or other conditions that damage or stress heart muscle. Loss ...

Heart attack treatment hypothesis 'busted'

July 6, 2015
Researchers have long had reason to hope that blocking the flow of calcium into the mitochondria of heart and brain cells could be one way to prevent damage caused by heart attacks and strokes. But in a study of mice engineered ...

Calcium uptake by mitochondria makes heart beat harder in fight-or-flight response

June 25, 2015
In a life-threatening situation, the heart beats faster and harder, invigorated by the fight-or-flight response, which instantaneously prepares a person to react or run. Now, a new study by researchers at Temple University ...

Recommended for you

New findings cast light on lymphatic system, key player in human health

October 16, 2018
Scientists at the Oklahoma Medical Research Foundation have broken new ground in understanding how the lymphatic system works, potentially opening the door for future therapies.

Age-related increase in estrogen may cause common men's hernia

October 16, 2018
An age-related increase in estrogen may be the culprit behind inguinal hernias, a condition common among elderly men that often requires corrective surgery, according to a Northwestern Medicine study was published Oct. 15 ...

New model suggests cuffless, non-invasive blood pressure monitoring possible using pulse waves

October 16, 2018
A large team of researchers from several institutions in China and the U.S. has developed a model that suggests it should be possible to create a cuffless, non-invasive blood pressure monitor based on measuring pulse waves. ...

Discovery of inner ear function may improve diagnosis of hearing impairment

October 15, 2018
Results from a research study published in Nature Communications show how the inner ear processes speech, something that has until now been unknown. The authors of the report include researchers from Linköping University, ...

Team's study reveals hidden lives of medical biomarkers

October 12, 2018
What do medical biomarkers do on evenings and weekends, when they might be considered off the clock?

Widespread errors in 'proofreading' cause inherited blindness

October 12, 2018
Mistakes in "proofreading" the genetic code of retinal cells is the cause of a form of inherited blindness, retinitis pigmentosa (RP) caused by mutations in splicing factors.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.