Study examines how Alzheimer's kills brain cells

October 17, 2012 by Nicole Casal Moore
Understanding Alzheimer's: Study gives insights into how disease kills brain cells
Amyloid plaques on axons of neurons affected by Alzheimer's disease. Credit: Stock image

(Medical Xpress)—Exactly how Alzheimer's disease kills brain cells is still somewhat of a mystery, but University of Michigan researchers have uncovered a clue that supports the idea that small proteins prick holes into neurons.

The team also found that a certain size range of of these proteins are particularly toxic to cells, while smaller and larger aggregates of the protein appear to be benign.

The findings, which appear in the journal , add important detail to the knowledge base regarding this disease that affects 5.4 million Americans in 2012 but remains incurable and largely untreatable. The results could potentially help pharmaceutical researchers target drugs to the right .

Small proteins called amyloid-beta peptides are the prime suspect for causing cell death in Alzheimer's. They make up most of the senile plaque fibers found in the brains of autopsied patients. Researchers offer several hypotheses for how the peptides might cause the disease. They blame inflammation, oxidative stress or an imbalance of possibly caused by holes in the cell membranes.

The U-M findings strongly support the idea that amyloid peptides damage the membrane around and lead to uncontrolled movement of calcium ions into them. is an important way that cells communicate and healthy cells regulate its flow precisely. The toxic mechanism implicated in the new study could act on its own or together with the other proposed courses and ultimately lead to a loss of in patients, the researchers say.

Complex statistical analysis suggests that medium size clumps of Amyloid-beta proteins kill nerve cells by punching holes in them, while smaller clumps and larger fibrils of Amyloid-beta appear to be protective. Amyloid beta is suspected to cause Alzheimer's disease. Credit: Erik Yusko

"There's a good chance Alzheimer's is caused, at least in part, by four- to 13-peptide aggregates that punch holes in cells and kill them gradually after prolonged exposure," said Michael Mayer, an associate professor of biomedical engineering and chemical engineering who led the research.

"The size range of amyloid clumps that we identified as the most pore-forming was also the most toxic. The correlation is staggering. In the conditions of the culture dish, these results strongly suggest that pore formation by amyloid-beta is responsible for neuronal cell death."

Using observation and sophisticated statistical analysis, the team explored whether the peptides' tendency to poke holes in cell membranes correlated with the death of actual cells under the same conditions.

To conduct the experiment, Panchika Prangkio, a Ph.D. student in Mayer's lab, formed amyloid-beta aggregates in water over 0, 1, 2, 3, 10 and 20 days. She measured how well amyloid clumps of various sizes punched pores in a lipid bilayer that mimicked a . And, separately, but with the same amyloid samples, the team observed how many cells died and determined which size amyloids were in the sample at each time point. The researchers used from a human nerve cell cancer line.

Their finding that mid-size amyloid clumps are most toxic supports recent theories that individual as well as longer amyloid fibers might be protective, rather than harmful, the researchers say. The smallest and largest aggregates were negatively correlated with , which suggests they may bind with the dangerous mid-length clumps and trap them in a nontoxic form.

The work could help advance the search for Alzheimer's treatments that would work by blocking pore formation by mid-sized amyloid-beta clumps. And they could raise questions about the potential efficacy of drugs (such as Bapineuzumab) that aim to remove large aggregates of amyloid beta

"The better the research community understands how Alzheimer's operates, the more likely we are to develop effective treatment," Mayer said.

The paper is titled "Multivariate analyses of amyloid-beta oligomer populations indicate a connection between pore formation and cytotoxicity." It is a collaborative effort with the research group of Jerry Yang, an associate professor of chemistry and biochemistry at the University of California, San Diego, and David Sept, an associate professor of biomedical engineering at U-M. Funding was provided by the Wallace H. Coulter Foundation with support from the Alzheimer's Association, the National Science Foundation and the government of Thailand.

Explore further: New findings contradict dominant theory in Alzheimer's disease

More information: www.plosone.org/article/info%3 … journal.pone.0047261

Related Stories

New findings contradict dominant theory in Alzheimer's disease

October 28, 2011
For decades the amyloid hypothesis has dominated the research field in Alzheimer's disease. The theory describes how an increase in secreted beta-amyloid peptides leads to the formation of plaques, toxic clusters of damaged ...

Scientists gain new understanding of Alzheimer's trigger

May 2, 2012
A highly toxic beta-amyloid – a protein that exists in the brains of Alzheimer's disease victims – has been found to greatly increase the toxicity of other more common and less toxic beta-amyloids, serving as a ...

Recommended for you

PET scans for Alzheimer's could bring benefit to more patients

October 19, 2017
An imaging tool honed to spot rogue proteins in the brain could benefit some patients with suspected Alzheimer's, according to a new study.

One step closer toward a treatment for Alzheimer's disease?

October 18, 2017
Scientists at the Massachusetts General Hospital (MGH), in collaboration with colleagues at the University California, San Diego (UCSD), have characterized a new class of drugs as potential therapeutics for Alzheimer's disease ...

New mechanism detected in Alzheimer's disease

October 13, 2017
McGill University researchers have discovered a cellular mechanism that may contribute to the breakdown of communication between neurons in Alzheimer's disease.

Neuroscientists identify genetic changes in microglia in a mouse model of neurodegeneration and Alzheimer's disease

October 13, 2017
Microglia, immune cells that act as the central nervous system's damage sensors, have recently been implicated in Alzheimer's disease.

Green tea extract delivers molecular punch to disrupt formation of neurotoxic species

October 11, 2017
Green tea is widely considered to be beneficial for the brain. The antioxidant and detoxifying properties of green tea extracts help fight catastrophic diseases such as Alzheimer's. However, scientists have never fully understood ...

Menopause triggers metabolic changes in brain that may promote Alzheimer's

October 10, 2017
Menopause causes metabolic changes in the brain that may increase the risk of Alzheimer's disease, a team from Weill Cornell Medicine and the University of Arizona Health Sciences has shown in new research.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.