Study examines how Alzheimer's kills brain cells

October 17, 2012 by Nicole Casal Moore
Understanding Alzheimer's: Study gives insights into how disease kills brain cells
Amyloid plaques on axons of neurons affected by Alzheimer's disease. Credit: Stock image

(Medical Xpress)—Exactly how Alzheimer's disease kills brain cells is still somewhat of a mystery, but University of Michigan researchers have uncovered a clue that supports the idea that small proteins prick holes into neurons.

The team also found that a certain size range of of these proteins are particularly toxic to cells, while smaller and larger aggregates of the protein appear to be benign.

The findings, which appear in the journal , add important detail to the knowledge base regarding this disease that affects 5.4 million Americans in 2012 but remains incurable and largely untreatable. The results could potentially help pharmaceutical researchers target drugs to the right .

Small proteins called amyloid-beta peptides are the prime suspect for causing cell death in Alzheimer's. They make up most of the senile plaque fibers found in the brains of autopsied patients. Researchers offer several hypotheses for how the peptides might cause the disease. They blame inflammation, oxidative stress or an imbalance of possibly caused by holes in the cell membranes.

The U-M findings strongly support the idea that amyloid peptides damage the membrane around and lead to uncontrolled movement of calcium ions into them. is an important way that cells communicate and healthy cells regulate its flow precisely. The toxic mechanism implicated in the new study could act on its own or together with the other proposed courses and ultimately lead to a loss of in patients, the researchers say.

Complex statistical analysis suggests that medium size clumps of Amyloid-beta proteins kill nerve cells by punching holes in them, while smaller clumps and larger fibrils of Amyloid-beta appear to be protective. Amyloid beta is suspected to cause Alzheimer's disease. Credit: Erik Yusko

"There's a good chance Alzheimer's is caused, at least in part, by four- to 13-peptide aggregates that punch holes in cells and kill them gradually after prolonged exposure," said Michael Mayer, an associate professor of biomedical engineering and chemical engineering who led the research.

"The size range of amyloid clumps that we identified as the most pore-forming was also the most toxic. The correlation is staggering. In the conditions of the culture dish, these results strongly suggest that pore formation by amyloid-beta is responsible for neuronal cell death."

Using observation and sophisticated statistical analysis, the team explored whether the peptides' tendency to poke holes in cell membranes correlated with the death of actual cells under the same conditions.

To conduct the experiment, Panchika Prangkio, a Ph.D. student in Mayer's lab, formed amyloid-beta aggregates in water over 0, 1, 2, 3, 10 and 20 days. She measured how well amyloid clumps of various sizes punched pores in a lipid bilayer that mimicked a . And, separately, but with the same amyloid samples, the team observed how many cells died and determined which size amyloids were in the sample at each time point. The researchers used from a human nerve cell cancer line.

Their finding that mid-size amyloid clumps are most toxic supports recent theories that individual as well as longer amyloid fibers might be protective, rather than harmful, the researchers say. The smallest and largest aggregates were negatively correlated with , which suggests they may bind with the dangerous mid-length clumps and trap them in a nontoxic form.

The work could help advance the search for Alzheimer's treatments that would work by blocking pore formation by mid-sized amyloid-beta clumps. And they could raise questions about the potential efficacy of drugs (such as Bapineuzumab) that aim to remove large aggregates of amyloid beta

"The better the research community understands how Alzheimer's operates, the more likely we are to develop effective treatment," Mayer said.

The paper is titled "Multivariate analyses of amyloid-beta oligomer populations indicate a connection between pore formation and cytotoxicity." It is a collaborative effort with the research group of Jerry Yang, an associate professor of chemistry and biochemistry at the University of California, San Diego, and David Sept, an associate professor of biomedical engineering at U-M. Funding was provided by the Wallace H. Coulter Foundation with support from the Alzheimer's Association, the National Science Foundation and the government of Thailand.

Explore further: New findings contradict dominant theory in Alzheimer's disease

More information: www.plosone.org/article/info%3 … journal.pone.0047261

Related Stories

New findings contradict dominant theory in Alzheimer's disease

October 28, 2011
For decades the amyloid hypothesis has dominated the research field in Alzheimer's disease. The theory describes how an increase in secreted beta-amyloid peptides leads to the formation of plaques, toxic clusters of damaged ...

Scientists gain new understanding of Alzheimer's trigger

May 2, 2012
A highly toxic beta-amyloid – a protein that exists in the brains of Alzheimer's disease victims – has been found to greatly increase the toxicity of other more common and less toxic beta-amyloids, serving as a ...

Recommended for you

Personality changes don't precede clinical onset of Alzheimer's, study shows

September 21, 2017
For years, scientists and physicians have been debating whether personality and behavior changes might appear prior to the onset of Alzheimer's disease and related dementias.

Newly ID'd role of major Alzheimer's gene suggests possible therapeutic target

September 20, 2017
Nearly a quarter century ago, a genetic variant known as ApoE4 was identified as a major risk factor for Alzheimer's disease—one that increases a person's chances of developing the neurodegenerative disease by up to 12 ...

Is the Alzheimer's gene the ring leader or the sidekick?

September 15, 2017
The notorious genetic marker of Alzheimer's disease and other forms of dementia, ApoE4, may not be a lone wolf.

Potential noninvasive test for Alzheimer's disease

September 6, 2017
In the largest and most conclusive study of its kind, researchers have analysed blood samples to create a novel and non-invasive way of helping to diagnose Alzheimer's disease and distinguishing between different types of ...

Researchers unlock the molecular origins of Alzheimer's disease

September 6, 2017
A "twist of fate" that is minuscule even on the molecular level may cause the development of Alzheimer's disease, VCU researchers have found.

Is dementia declining among older Americans?

September 5, 2017
(HealthDay)—Here's some good news for America's seniors: The rates of Alzheimer's and other forms of dementia have dropped significantly over the last decade or so, a new study shows.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.