Watching the brain do its thing

April 3, 2014 by Cynthia Eller, California Institute of Technology
Mikhail Shapiro. Credit: Lance Hayashida

To a large extent, the brain remains a black box. Taking it out of its case inside the skull and examining it—as in an autopsy—reveals some things, but not how the brain works in a living, functioning being. Assistant Professor of Chemical Engineering Mikhail Shapiro is determined to reveal the mysteries of the brain in situ, in living beings, right down to the cellular level.

Shapiro comes to Caltech from UC Berkeley, where he launched his independent research career as a Miller Fellow. Prior to that, Shapiro was a postdoctoral fellow at the University of Chicago. He received his PhD from the Massachusetts Institute of Technology. Shapiro recently sat down to discuss his research and his adjustment to his new life at Caltech.

What are you most excited about in coming to Caltech?

I'm excited for the opportunity to collaborate with the amazing faculty and students we have here across the disciplines. My first three PhD students all come from different programs, and I already have a collaboration with a colleague in electrical engineering. I can't imagine this happening so quickly and naturally anywhere else in the world.

What is the main focus of your research?

The goal of our research is to develop ways to study biological systems at the in living, breathing organisms. To do that we need ways to image and control specific molecular functions in tissues noninvasively.

Great advances have been made with dyes and to help scientists see what's happening inside , but these techniques don't allow us to penetrate very deeply into larger tissues. So what we want to do is create the equivalents of dyes and fluorescent proteins for technologies like ultrasound and (MRI) so that we can see and label very specific things deep inside the body, and particularly in the brain.

For example, we are interested in how neural in the brain—which are regenerated even in adults—develop into different types of . What kinds of genes do they turn on and off, as they become a neuron or a glial cell in different parts of the brain? We are designing molecular reporters that will allow us to use MRI or ultrasound to monitor these cells as they migrate, express genes, and integrate into functional neural circuits.

How do you get these "molecular reporters" into the body?

The vast majority of the things we're working on are genetically encodable, which means that we can take the relevant genes, put them into a vector—for example, a nontoxic virus—and deliver them to specific cells. So not only would we be able to target a particular region of the , but we would be able to target specific cell types.

Will the technologies you're developing be useful in exploring other systems in the body?

Yes. Our main raison d'etre is to develop ways to probe the nervous system, but the technologies we develop could be used in a variety of biological contexts and in synthetic biology. In addition, we are fascinated by the basic science involved with connecting various forms of energy—magnetic fields, sound waves, temperature—with biological molecules and . This interface is relatively unexplored, and we hope to contribute to its fundamental understanding.

Explore further: MRI reveals genetic activity

Related Stories

MRI reveals genetic activity

March 25, 2014
Doctors commonly use magnetic resonance imaging (MRI) to diagnose tumors, damage from stroke, and many other medical conditions. Neuroscientists also rely on it as a research tool for identifying parts of the brain that carry ...

Real-time insight into our brain

March 4, 2014
Combining two imagine technologies, such as MRI for structure and MEG for activity, could provide a new understanding of our how our brain works.

Eliciting brain plasticity to keep the body moving

April 1, 2014
With support from the National Science Foundation's (NSF) Emerging Frontiers of Research and Innovation (EFRI) program, bioengineer Gert Cauwenberghs, of the Jacobs School of Engineering and the Institute for Neural Computation ...

For neurons in the brain, identity can be used to predict location

March 24, 2014
Throughout the world, there are many different types of people, and their identity can tell a lot about where they live. The type of job they work, the kind of car they drive, and the foods they eat can all be used to predict ...

Recommended for you

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.