Researchers show how cancer cells may respond to mechanical force

April 9, 2014
A magnetized bead attaches to the exterior of a cell nucleus. The beads allow researchers to map out the signalling pathways that activate when physical forces push and pull on a cell. Credit: UNC/Burridge Lab

The push and pull of physical force can cause profound changes in the behavior of a cell. Two studies from researchers working at the UNC Lineberger Comprehensive Cancer Center reveal how cells respond to mechanical manipulation, a key factor in addressing the underlying causes of cancer and other diseases.

The studies, published in Nature Cell Biology and the Journal of Immunology, have their roots in a longtime partnership between the labs of Keith Burridge, PhD, Kenan Professor of Cell Biology and Physiology in the UNC School of Medicine, and Richard Superfine, PhD, Taylor-Williams Distinguished Professor of Physics and Astronomy in the College of Arts and Sciences.

Using equipment funded in part by the University Cancer Research Fund, researchers in Burridge's lab work to identify the processes and cellular pathways that allow to move, stiffen, and react to physical stresses. This knowledge, researchers hope, could reveal the causes of cancer and help develop treatments, including therapies for a variety of diseases.

"In the cancer context, mechanical force is important because will generate force as they are invading, pulling on other cells," said Burridge, a Lineberger member. "They are pulling on the cells they are attached to as they are trying to get away."

In the Nature Cell Biology paper, lead author Christophe Guilluy, a postdoc in the Burridge lab, showed that the nucleus of a cell responds and reacts to mechanical force. Using 2.8-4 micron metallic beads coated with a protein that binds to the exterior of the nucleus, Guilluy pulled on the beads using a series of magnetic pulses. With each pulse, the nucleus moved a fraction less than during the previous pulse, showing that the nucleus stiffened in response to the mechanical force.

Before this experiment, scientists thought that the cellular response to physical manipulation emanated from the cell surface and the cytoskeleton surrounding the nucleus and other organelles.

"We normally think of cells responding to mechanical forces at their periphery," Burridge said. "This is the first time, I think, that someone has shown that an isolated organelle can respond to . I think it is actually a significant finding in the big picture of biology."

In the Journal of Immunology paper, lead author graduate student Elizabeth Lessey-Morillon examined the ways in which the cells lining our blood vessels stiffen and relax to allow to pass out of the bloodstream into surrounding tissue. Cancer researchers have a particular interest in this process, as metastasizing tumor cells may use the same mechanisms to migrate through the body.

"We think metastasizing cells may essentially mimic what do," said Burridge.

Using magnetic beads attached to the that line blood vessels, Lessey-Morillon discovered that applying force to the cells caused them to stiffen, opening gaps between the cells through which the white blood cells could pass. The response activated a pathway mediated by the proteins RhoA and LARG.

When she blocked the pathway, the cell stiffening response slowed. Because the pathway may also play a role in cancer metastasis, Burridge said the response could indicate that this pathway could be a viable target for future therapies.

"We think this response would be true also for tumor cells moving over the surface. They wouldn't be as competent in passing through the endothelial wall," said Burridge.

Explore further: Scientists identify how cells respond to mechanical force

Related Stories

Scientists identify how cells respond to mechanical force

July 8, 2011
Many aspects of cell behaviour are influenced by mechanical force, but how single cells respond to these forces is unclear. An EU-funded team of researchers sheds light on the relationship between the signals that affect ...

Study finds that fast-moving cells in the human immune system walk in a stepwise manner

March 17, 2014
A team of biologists and engineers at the University of California, San Diego has discovered that white blood cells, which repair damaged tissue as part of the body's immune response, move to inflamed sites by walking in ...

FAK helps tumor cells enter the bloodstream

January 20, 2014
Cancer cells have something that every prisoner longs for—a master key that allows them to escape. A study in The Journal of Cell Biology describes how a protein that promotes tumor growth also enables cancer cells to use ...

Researchers discover disruptions in signaling pathways that enable colorectal cancer cells to form metastases

March 24, 2014
Researchers at the University of Freiburg have found switches that colorectal cancer cells use to migrate away from the primary tumor site and to invade neighboring tissue. This migration is the first step in metastasis, ...

Team discovers new mechanism allowing tumor cells to escape immune surve

March 18, 2014
The immune system plays a pivotal role in targeting cancer cells for destruction. However, tumor cells are smart and have developed ways to avoid immune detection. A collaborative team of researchers at Moffitt Cancer Center ...

Recommended for you

Genetic immune deficiency could hold key to severe childhood infections

July 18, 2017
A gene mutation making young children extremely vulnerable to common viruses may represent a new type of immunodeficiency, according to a University of Queensland researcher.

What are the best ways to diagnose and manage asthma?

July 18, 2017
What are the best ways to diagnose and manage asthma in adults? This can be tricky because asthma can stem from several causes and treatment often depends on what is triggering the asthma.

Large multi-ethnic study identifies many new genetic markers for lupus

July 17, 2017
Scientists from an international consortium have identified a large number of new genetic markers that predispose individuals to lupus.

Study finds molecular explanation for struggles of obese asthmatics

July 17, 2017
A large, bouquet-shaped molecule called surfactant protein A, or SP-A, may explain why obese asthma patients have harder-to-treat symptoms than their lean and overweight counterparts, according to a new study led by scientists ...

Team identifies potential cause for lupus

July 14, 2017
Leading rheumatologist and Feinstein Institute for Medical Research Professor Betty Diamond, MD, may have identified a protein as a cause for the adverse reaction of the immune system in patients suffering from lupus. A better ...

Immunosuppression underlies resistance to anti-angiogenic therapy

July 14, 2017
A Massachusetts General Hospital (MGH) research team has identified a novel mechanism behind resistance to angiogenesis inhibitors - drugs that fight cancer by suppressing the formation of new blood vessels. In their report ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.