Study shows that organoids open up new insights into the development of our brain

April 4, 2017, University of Bonn
Associate professor Dr. Philipp Koch, Dr. Julia Ladewig and Vira Iefremova. Credit: (c) Photo: Barbara Frommann/Uni Bonn

A new method could push research into developmental brain disorders an important step forward. This is shown by a recent study at the University of Bonn in which the researchers investigated the development of a rare congenital brain defect. To do so, they converted skin cells from patients into so called induced pluripotent stem cells. From these 'jack-of-all-trades' cells, they generated brain organoids—small three-dimensional tissues which resemble the structure and organization of the developing human brain. The work has now been published in the journal Cell Reports.

Investigations into human development using in the culture dish have so far been very limited: the cells in the dish grow flat, so they do not display any three-dimensional structure. Model organisms are available as an alternative, such as mice. The human brain has, however, a much more complex structure. Developmental disorders of the human brain can thus only be resembled to a limited degree in the animal model.

Scientists at the Institute of Reconstructive Neurobiology at the University of Bonn applied a recent development in to tackle this limitation: they grew three-dimensional organoids in the cell culture dish, the structure of which is incredibly similar to that of the human brain. These "mini brains" offer insight into the processes with which individual nerve cells organize themselves into our highly complex tissues. "The method thus opens up completely new opportunities for investigating disorders in the architecture of the developing ," explains Dr. Julia Ladewig, who leads a working group on brain development.

Rare brain deformity investigated

In their work, the scientists investigated the Miller-Dieker syndrome. This hereditary disorder is attributed to a chromosome defect. As a consequence, patients present malformations of important parts of their brain. "In patients, the surface of the brain is hardly grooved but instead more or less smooth," explains Vira Iefremova, PhD student and lead author of the study. What causes these changes has so far only been known in part.

The researchers produced induced from from Miller-Dieker patients, from which they then grew brain organoids. In organoids, the organize themselves - very similar to the process in the brain of an embryo: the stem cells divide; a proportion of the daughter cells develops into nerve cells; these move to wherever they are needed. These processes resemble a complicated orchestral piece in which the genetic material waves the baton.

In Miller-Dieker patients, this process is fundamentally disrupted. "We were able to show that the stem cells divide differently in these patients," explains associate professor Dr. Philipp Koch, who led the study together with Dr. Julia Ladewig. "In healthy people, the stem cells initially extensively multiply and form organized, densely packed layers. Only a small proportion of them becomes differentiated and develops into ."

Certain proteins are responsible for the dense and even packing of the stem cells. The formation of these molecules is disrupted in Miller-Dieker patients. The stem are thus not so tightly packed and, at the same time, do not have such a regular arrangement. This poor organization leads, among other things, to the becoming differentiated at an earlier stage. "The change in the three-dimensional tissue structure thus causes altered division behavior," says Ladewig. "This connection cannot be identified in animals or in two-dimensional cell culture models."

The scientist emphasizes that no new treatment options are in sight as a result of this. "We are undertaking fundamental research here. Nevertheless, our results show that organoids have what it takes to herald a new era in brain research. And if we better understand the development of our brain, new treatment options for disorders of the brain can presumably arise from this over the long term."

Explore further: Study implicates neural stem cell defects in smooth brain syndrome

More information: Cell Reports (2017). DOI: 10.1016/j.celrep.2017.03.047

Related Stories

Study implicates neural stem cell defects in smooth brain syndrome

February 13, 2017
Research led by scientists at UC San Francisco and Case Western Reserve University School of Medicine has used brain "organoids"—tiny 3-D models of human organs that scientists grow in a dish to study disease—to identify ...

A closer look at brain organoid development

March 10, 2017
How close to reality are brain organoids, and which molecular mechanisms underlie the remarkable self-organizing capacities of tissues? Researchers already have succeeded in growing so-called "cerebral organoids" in a dish ...

Zika virus reduces growth and induces cell death and malformations in human neurospheres and brain organoids

April 11, 2016
Brazilian researchers from the D'Or Institute for Research and Education (IDOR) and Federal University of Rio de Janeiro (UFRJ) have demonstrated the harmful effects of ZIKA virus (ZIKV) in human neural stem cells, neurospheres ...

Building a better brain

December 20, 2016
When you build models, whether ships or cars, you want them to be as much like the real deal as possible. This quality is even more crucial for building model organs, because disease treatments developed from these models ...

Recommended for you

Scientists grow human esophagus in lab

September 20, 2018
Scientists working to bioengineer the entire human gastrointestinal system in a laboratory now report using pluripotent stem cells to grow human esophageal organoids.

Researchers identify human skeletal stem cells

September 20, 2018
Human skeletal stem cells that become bone, cartilage, or stroma cells have been isolated from fetal and adult bones. This is the first time that skeletal stem cells, which had been observed in rodent models, have been identified ...

Study identifies stem cell that gives rise to new bone and cartilage in humans

September 20, 2018
A decade-long effort led by Stanford University School of Medicine scientists has been rewarded with the identification of the human skeletal stem cell.

A new app enables a smartphone to ID bacteria in just one hour

September 20, 2018
In a potential game changer for the health care industry, a new cell phone app and lab kit now allow a smartphone to identify bacteria from patients anywhere in the world. With the new app, doctors will be able to diagnose ...

Zombie cells found in brains of mice prior to cognitive loss

September 19, 2018
Zombie cells are the ones that can't die but are equally unable to perform the functions of a normal cell. These zombie, or senescent, cells are implicated in a number of age-related diseases. And with a new letter in Nature, ...

Synthetic sandalwood found to prolong human hair growth

September 19, 2018
A team of researchers led by Ralf Paus of the University of Manchester has found that applying sandalwood to the scalp can prolong human hair growth. In their paper published in the journal Nature Communications, the group ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.