Space-like gravity weakens biochemical signals in muscle formation

May 23, 2018, Hiroshima University
Skeletal myoblast cells in rats. Credit: Yuge Lab

Astronauts go through many physiological changes during their time in spaceflight, including lower muscle mass and slower muscle development. Similar symptoms can occur in the muscles of people on Earth's surface, too. In fact, it could affect everyone to some extent later in life.

"Age-related skeletal muscle disorders, such as sarcopenia, are becoming a greater concern in society," said Hiroshima University (HU) Professor and Space Bio-Laboratories Director Louis Yuge. "It is especially a big concern in Japan, where the number of aging people is increasing."

In a study published in npj Microgravity, a medical research group at HU led by Yuge shed light on these similarities. They found that the process that affects of differentiating in also affects in the presence of gravity.

The genetic and molecular basis of impaired muscle development has been unclear. Yuge thinks there is a pressing need to understand it and come up with better treatment outcomes. He and his team investigated how simulated microgravity—that is, gravity in space-like conditions—affects muscle cell differentiation and gene expression.

They observed what happened to rat muscle cells over time. Some cells were treated with a drug that stops DNA methylation from happening, while other cells were not. DNA methylation is a process that controls gene expression and muscle cell differentiation.

Gravite is a multi-directional gravity device for simulating microgravity or hypergravity condition culture Credit: Space Bio-Laboratories Co.,Ltd.

Next, they grew the cells either in normal gravity or inside of Gravite, a machine that simulates gravity at levels that astronauts experience in spaceflight. Cells in microgravity exhibited less cell differentiation after all. However, cells growing without the drug formed muscle fibers at a slower rate and showed less gene expression.

One gene, Myod1, was of particular interest. Its expression levels were significantly lower in microgravity conditions and when growing with the drug that stopped DNA methylation.

Within gravity, as well as without it, the group concluded that DNA methylation appears to be a key player in regulating muscle cell differentiation. "These findings highlight genes affected by DNA methylation, like Myod1, as potential targets for treating patients with skeletal muscle atrophy," Yuge said.

The team's results can be utilized in space experiments, where atrophy of astronauts uses myotubes because it is easy to understand morphologically. Additionally, the findings of this epigenetics can be used in many , , or cancer. The Micro-G Center of the Kennedy Space Center of NASA, where Yuge is an advisory committee member, and NASA have already conducted experiments to cultivate stem cells on the International Space Station, where this paper can also provide insight. Yuge and his team are expected to start a massive space experiment at NASA/Center for Advancement of Science in Space (CASIS).

Explore further: Obesity reprogrammes muscle stem cells

More information: Takuma Furukawa et al, Simulated microgravity attenuates myogenic differentiation via epigenetic regulations, npj Microgravity (2018). DOI: 10.1038/s41526-018-0045-0

Related Stories

Obesity reprogrammes muscle stem cells

February 22, 2017
Obesity is associated with reduced muscle mass and impaired metabolism. Epigenetic changes that affect the formation of new muscle cells may be a contributing factor, according to new research from Lund University, Sweden.

DNA methylation plays key role in stem cell differentiation

March 26, 2018
Northwestern Medicine scientists have discovered how the process of DNA methylation regulates the development of spinal cord motor neurons, according to a study published in the journal Cell Stem Cell.

Recommended for you

Stem cell researchers develop promising technique to generate new muscle cells in lab

December 12, 2018
To help patients with muscle disorders, scientists at The University of Texas Health Science Center at Houston (UTHealth) have engineered a new stem cell line to study the conversion of stem cells into muscle. Findings appeared ...

Gut hormone increases response to food

December 12, 2018
The holiday season is a hard one for anyone watching their weight. The sights and smells of food are hard to resist. One factor in this hunger response is a hormone found in the stomach that makes us more vulnerable to tasty ...

New mouse model may speed identification of promising muscular dystrophy therapies

December 12, 2018
A Massachusetts General Hospital (MGH) research team has created a new mouse model of a common form of muscular dystrophy with the potential of rapidly distinguishing promising therapeutic drugs from those unlikely to be ...

New insight into stem cell behaviour highlights therapeutic target for cancer treatment

December 12, 2018
Research led by the University of Plymouth and Technische Universität Dresden has identified a new therapeutic target for cancer treatment and tissue regeneration – a protein called Prominin-1.

Study examines disruption of circadian rhythm as risk factor for diseases

December 11, 2018
USC scientists report that a novel time-keeping mechanism within liver cells that helps sustain key organ tasks can contribute to diseases when its natural rhythm is disrupted.

New light-based technology reveals how cells communicate in human disease

December 11, 2018
Scientists at the University of York have developed a new technique that uses light to understand how cells communicate in human disease.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.