Genetic 'whodunnit' for cancer gene solved

November 8, 2018, Salk Institute
Genetically engineered lung tumors (solid purple) within the native lung environment are shown. Credit: Salk Institute

Long thought to suppress cancer by slowing cellular metabolism, the protein complex AMPK also seemed to help some tumors grow, confounding researchers. Now, Salk Institute researchers have solved the long-standing mystery around why AMPK can both hinder and help cancer.

The lab of Salk Professor Reuben Shaw showed that late-stage cancers can trigger AMPK's cellular recycling signal to cannibalize pieces of the cell, supplying large lung tumors with the nutrients they need to grow. The work, which appeared in Cell Metabolism on November 8, 2018, suggests that blocking AMPK in some conditions could stop the growth of advanced tumors in the most common type of lung cancer.

"Our study shows that the same dysfunction in a genetic circuit that causes to begin with is necessary for more mature to survive when they don't have enough nutrients," says Shaw, director of the Salk Cancer Center and the paper's senior author. "It's exciting because not only does it solve a genetic 'whodunnit,' but it also points to a potential new therapeutic target for a that is often diagnosed very late."

AMPK acts as a fuel gauge for the cell, overseeing energy input and output to keep the cell running smoothly. Similar to a car sensor flashing a low-gas signal or turning off a vehicle's AC to save energy, AMPK slows down cell growth and changes the cell's metabolism if the cell's fuel (nutrients) is low. Previously, Shaw discovered that AMPK could halt tumors' revved-up metabolism, as well as restore normal function to the liver and other tissues in diabetics.

Salk scientists find how the enzyme AMPK, largely thought to suppress cancer, actually helps some tumors survive. From left: Reuben Shaw and Lillian Eichner. Credit: Salk Institute

But the Shaw lab's new work suggests that AMPK actually helps large tumors grow. In the current study, the team observed groups of mice with and without the AMPK fuel gauge to see how tumors developed.

"We found that tumors grew much more slowly when AMPK was not present," says Research Associate Lillian Eichner, the paper's first author. "That means that AMPK is not always functioning as a tumor suppressor, as we originally thought."

The team analyzed which genes in tumor cells from the same mouse models were being activated under various conditions. One gene that was particularly active was Tfe3, which is known to activate cellular recycling. It turned out that when tumors became large enough that cells in the middle were too far from easy access to nutrients, AMPK signaled Tfe3 to initiate recycling of cellular materials as nutrients—effectively cannibalizing pieces of the cell—for the tumor to use.

"Previously we were focused on how we could activate AMPK," says Eichner. "Now that we've identified this mechanism, we can shift to how to inhibit it in certain cancers."

Shaw, who holds the William R. Brody Chair, adds, "We're excited because more advanced tumors seem to rely on AMPK to survive, and understanding this mechanism means we may be able to treat them."

Explore further: Scientists uncover how a cell's 'fuel gauge' promotes healthy development

More information: Lillian J. Eichner et al, Genetic Analysis Reveals AMPK Is Required to Support Tumor Growth in Murine Kras-Dependent Lung Cancer Models, Cell Metabolism (2018). DOI: 10.1016/j.cmet.2018.10.005

Related Stories

Scientists uncover how a cell's 'fuel gauge' promotes healthy development

April 25, 2016
Salk scientists have revealed how a cellular "fuel gauge" responsible for monitoring and managing cells' energy processes also has an unexpected role in development. This critical link could help researchers better understand ...

Nutrients may reduce blood glucose levels

October 10, 2018
Type 2 diabetes is driven by many metabolic pathways, with some pathways driven by amino acids, the molecular building blocks for proteins. Scientists at Joslin Diabetes Center now have shown that one amino acid, alanine, ...

Cellular fuel gauge may hold the key to restricting cancer growth

December 27, 2012
Researchers at McGill University have discovered that a key regulator of energy metabolism in cancer cells known as the AMP-activated protein kinase (AMPK) may play a crucial role in restricting cancer cell growth. AMPK acts ...

Study suggests well-known growth suppressor actually fuels lethal brain cancers

June 18, 2018
Scientists report finding a potentially promising treatment target for aggressive and deadly high-grade brain cancers like glioblastoma. But they also say the current lack of a drug that hits the molecular target keeps it ...

Study provides new insights for ways to use cell metabolism to treat cancer

August 28, 2018
Researchers at the University of Cincinnati (UC) College of Medicine have discovered that cell metabolism plays an important role in the ability of cells to start a survival program called autophagy, an unwanted side effect ...

AMPK amplifies Huntington's disease

July 18, 2011
A new study describes how hyperactivation of AMP-activated protein kinase (AMPK) promotes neurodegeneration in Huntington's disease (HD). The article appears online on July 18, 2011, in The Journal of Cell Biology.

Recommended for you

Obesity both feeds tumors and helps immunotherapy kill cancer

November 12, 2018
A groundbreaking new study by UC Davis researchers has uncovered why obesity both fuels cancer growth and allows blockbuster new immunotherapies to work better against those same tumors.

Cancer stem cells get energy from protein, and it's proving to be their Achilles' heel

November 12, 2018
Think of energy metabolism like a party popper: Ripping something apart releases a bang. Most of your cells rip apart sugar to release the "bang" of energy. Sometimes they rip apart fats, and in a pinch, cells can even metabolize ...

Spread of deadly eye cancer halted in cells and animals

November 12, 2018
By comparing genetic sequences in the eye tumors of children whose cancers spread with tumors that didn't spread, Johns Hopkins Medicine researchers report new evidence that a domino effect in cells is responsible for the ...

Scientists shine new light on link between obesity and cancer

November 12, 2018
Scientists have made a major discovery that shines a new, explanatory light on the link between obesity and cancer. Their research confirms why the body's immune surveillance systems—led by cancer-fighting Natural Killer ...

Two-pronged device enables maverick immune cells to identify and kill cancers

November 12, 2018
Immune cells called Gamma Delta T cells can act independently to identify and kill cancer cells, defying the conventional view of the immune system, reveals new research from the Francis Crick Institute and King's College ...

Research brings personalized medicine to treat leukemia one step closer

November 12, 2018
Scientists at the University of Birmingham have revealed the roles that different types of gene mutations play in causing blood cancers in a study that was the culmination of a decade's research.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.