Age-related changes in skin structure and lymphatic system promote melanoma metastasis

October 2, 2018, The Wistar Institute
Melanoma in skin biopsy with H&E stain — this case may represent superficial spreading melanoma. Credit: Wikipedia/CC BY-SA 3.0

Changes in the structure of the skin and the lymphatic system that occur with the natural aging process create permissive conditions for melanoma metastasis, according to two studies by The Wistar Institute. These changes are caused by loss of the HAPLN1 protein, which is part of the extracellular matrix, during aging. The studies were published back-to-back in Cancer Discovery.

Older age is a negative prognostic factor for , associated with higher frequency of development of incurable distant metastasis. Ashani Weeraratna, Ph.D., Ira Brind Professor, and professor and co-leader of the Immunology, Microenvironment and Metastasis Program at Wistar, and team have a long-standing focus on how aging affects the melanoma microenvironment, or the tumor's ecosystem that includes , fibroblasts, blood and lymphatic vessels, and signaling molecules, to understand how age-related changes contribute to tumor progression and therapy resistance.

In these new studies, the Weeraratna Lab and collaborators characterized architectural changes that occur in the extracellular matrix (ECM) in the skin and surrounding the lymphatic vessels, which promote the spread of melanoma cells to distant sites by influencing tumor cell and immune cell trafficking. They also discovered a fundamental role played by the HAPLN1 protein in the molecular mechanisms underlying these changes.

In one study, the researchers focused on ECM produced by fibroblasts in the dermal layer of the skin and observed dramatic changes in expression levels of many ECM proteins, particularly HAPLN1.

"The same structural changes that happen in our skin with aging and cause the appearance of wrinkles are also responsible for the increased risk of metastasis in older melanoma patients," said Weeraratna, senior author in both studies. "With advancing age, the network of fibers that supports our skin loses the 'basket weave' organization that is characteristic of younger skin, and becomes looser. In a tumor setting, we think of it as a barrier that helps contain the by inhibiting their motility while favoring infiltration of immune cells into the tumor mass. In older patients, due to the loss of HAPLN1, this barrier becomes less efficient."

By manipulating expression levels of HAPLN1 in three-dimensional human skin reconstruct models and in mouse skin models, Weeraratna and colleagues showed that loss of HAPLN1 creates a permissive microenvironment that favors escape of tumor cells while hampering trafficking of antitumor immune cells, particularly CD8+ T cells. Accordingly, injection of recombinant HAPLN1 around the tumor in melanoma mouse models reduced the size and metastatic capability of the .

In the second study, Weeraratna and colleagues showed that age-associated loss of lymphatic vessel integrity allows to escape more easily the lymphatic system and the proximal lymph nodes to reach distant sites. Results showed that this process, too, is associated with loss of HAPLN1, which causes a similar scenario to that described in the : degradation of the in which the lymphatic vessels are embedded and reduced anchorage of lymphatic endothelial cells to their structural support, which results in increased permeability.

"It is known that older individuals with melanoma have a lower incidence of lymphatic metastasis than younger patients yet higher rates of distant visceral metastasis," said Weeraratna. "Our observation that older and lymph nodes are less efficient as a barrier to contain the metastatic may underlie that observation."

In this setting, injection of recombinant HAPLN1 into the draining lymph nodes of aged melanoma-bearing mice increased the rates of lymphatic micrometastases while reducing the frequency of lung metastasis, suggesting that containment of the in the local lymphatic system may have therapeutic implications when coupled to surgical resection of the sentinel .

Taken together, the two studies support a novel, fundamental role for HAPLN1 as a prognostic factor for long-term survival and a potential new therapeutic avenue.

Explore further: Lymphatic endothelial cells promote melanoma to spread

Related Stories

Lymphatic endothelial cells promote melanoma to spread

May 1, 2018
The lymph vessel endothelial cells play an active role in the spread of melanoma, according to the new study conducted at the University of Helsinki. The researchers found that growing human melanoma cells in co-cultures ...

Older melanoma patients have better response to immune checkpoint blockade therapy

June 13, 2018
Patient age correlates with response to immunotherapy in melanoma and depleting regulatory T cells in young patients may have a therapeutic potential to enhance response in younger patients, according to research from The ...

Anti-aging gene identified as a promising therapeutic target for older melanoma patients

February 23, 2017
Scientists at The Wistar Institute have shown that an anti-diabetic drug can inhibit the growth of melanoma in older patients by activating an anti-aging gene that in turn inhibits a protein involved in metastatic progression ...

Aging impacts therapeutic response of melanoma cells

April 4, 2016
Cancer risk increases with one's age as accumulated damage to our cells and chronic inflammation occur over time. Now, an international team of scientists led by The Wistar Institute have shown that aged tumor cells in melanoma ...

Lymphatic vessels unexpectedly promote the spread of cancer metastases

August 14, 2018
Lymphatic vessels actively contribute to the spread of cancer metastases from various organs. This unexpected realisation is the result of a joint study by researchers from ETH Zurich and the University Hospital Zurich as ...

Recommended for you

Student develops microfluidics device to help scientists identify early genetic markers of cancer

October 16, 2018
As anyone who has played "Where's Waldo" knows, searching for a single item in a landscape filled with a mélange of characters and objects can be a challenge. Chrissy O'Keefe, a Ph.D. student in the Department of Biomedical ...

A bad influence—the interplay between tumor cells and immune cells

October 16, 2018
Research at Huntsman Cancer Institute (HCI) at the University of Utah (U of U) yielded new insights into the environment surrounding different types of lung tumors, and described how these complex cell ecosystems may in turn ...

Technique to 'listen' to a patient's brain during tumour surgery

October 16, 2018
Surgeons could soon eavesdrop on a patient's brain activity during surgery to remove their brain tumour, helping improve the accuracy of the operation and reduce the risk of impairing brain function.

Researchers elucidate roles of TP63 and SOX2 in squamous cell cancer progression

October 16, 2018
Squamous cell carcinomas (SCCs) are aggressive malignancies arising from the squamous epithelium of various organs, such as the esophagus, head and neck, lungs, and skin. Previous studies have demonstrated that two master ...

Function of neutrophils during tumor progression unraveled

October 15, 2018
Researchers at The Wistar Institute have characterized the function of neutrophils, a type of white blood cells, during early stages of tumor progression, showing that they migrate from the bone marrow to distant sites and ...

Delving where few others have gone, leukemia researchers open new path

October 15, 2018
A Wilmot Cancer Institute study uncovers how a single gene could be at fault in acute myeloid leukemia (AML), one of the deadliest cancers. The breakthrough gives researchers renewed hope that a gene-targeted therapy could ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.