New information on the pathological mechanisms of Alzheimer's disease

November 21, 2018, University of Helsinki
Immunoelectron microscopy image of accumulated tau protein on cell membrane. Credit: Henri Huttunen

Researchers at the University of Helsinki have discovered a mechanism by which harmful tau protein aggregates are transmitted between neurons. Alongside amyloid plaques, tau aggregates in the brain are a significant factor in the progression of Alzheimer's disease.

Alzheimer's is associated with two neuropathologies: plaques and tau aggregates, or tau accumulated in neurofibrillary tangles in neurons. Brain amyloid plaques are the better-known pathology, but the significance of tau to disease progression is equally important.

"It seems that in Alzheimer's disease, amyloid accumulation in the brain starts first, but symptoms typically occur after the amyloid pathology induces the tau pathology, at which point neuronal cell death and the loss of synapses start to accelerate," says Henri Huttunen, a docent at the Neuroscience Center of the University of Helsinki (a HiLIFE unit).

"It looks like tau accumulation is the really harmful element of the disease."

Tau also occurs in healthy neurons, but the accumulation of incorrectly folded, pathological tau plays a key role in Alzheimer's.

Earlier it was thought that tau aggregates only gain access outside once the cells die, but in recent years it has been found that tau pathology can move from sick to healthy cells. Prior to this, however, the molecular mechanisms that help tau penetrate the cell have not been understood.

The recent study by Henri Huttunen's and Riikka-Liisa Uronen's research group, published in the Cell Reports journal, indicates that the accumulation of pathological tau triggers a safety valve mechanism in the otherwise well-regulated cell membrane.

"As the regulatory mechanisms of the give in, the protein ends up in the cell membrane, instead of the cell's cytoskeleton. The cholesterol-rich lipid rafts of the cell membrane seem to play a central role in this tau secretion mechanism," Huttunen says.

The study used cultured neurons and tailored reporter proteins to closely observe tau transfer between cells.

Normally, the cell membrane keeps the internal and external parts of the cell strictly apart. The membrane is a fatty film whose permeability to proteins, neurotransmitters and other biomolecules is carefully regulated.

From the perspective of drug development, the finding introduces a novel mechanism at which pharmacological molecules can be targeted. The accumulation of tau and amyloid into cerebrospinal fluid and the brain is already being used in disease diagnostics.

Molecular data on how tau interacts with cell membranes can potentially be used in slowing down Alzheimer's disease and other diseases that belong to a group known as tauopathies.

Unlike amyloid plaques, tau protein aggregates also occur in other neurodegenerative diseases, such as frontotemporal dementia.

"Currently we are only able to treat the symptoms of these disorders, which makes the development of a treatment that slows down disease progression an important goal," explains Huttunen.

The project headed by Huttunen already observed that cell membranes were sensitive to manipulation and that omega-3 fatty acids were particularly effective in preventing tau from permeating the membrane.

Neuronal cell membranes contain much more omega-3 fatty acids than other cell types, and there is epidemiological data suggesting their significance to brain health, which is reflected in current dietary recommendations.

"When omega-3 fatty acid DHA was added to the cell cultures, tau secretion from cells collapsed. It seems that omega-3 fatty acids modify the microstructure of the cell membrane to become less permeable to tau aggregates, capturing the protein within the cell," says Huttunen.

Explore further: Researchers identify new potential biotherapy for Alzheimer's disease

More information: Maria Merezhko et al, Secretion of Tau via an Unconventional Non-vesicular Mechanism, Cell Reports (2018). DOI: 10.1016/j.celrep.2018.10.078

Related Stories

Researchers identify new potential biotherapy for Alzheimer's disease

August 29, 2018
Researchers at the University of Florida have discovered that a modified version of an important immune cell protein could be used to treat Alzheimer's disease. The study, which will be published August 29 in the Journal ...

Alzheimer's disease: How amyloid aggregates alter neuronal function

June 12, 2018
While the harmful effects of amyloid peptide aggregates observed in Alzheimer's disease are well established, the mechanism through which they act on brain cells remains ill-defined. Researchers from CNRS and universite de ...

Brain cholesterol associated with increased risk of Alzheimer's disease

May 7, 2018
Researchers have shown how cholesterol—a molecule normally linked with cardiovascular diseases—may also play an important role in the onset and progression of Alzheimer's disease.

New mechanism by which Alzheimer's disease spreads through the brain discovered

June 14, 2018
The waste-management system of the cell appears to play an important role in the spread of Alzheimer's disease in the brain. A new study has focused on small, membrane-covered droplets known as exosomes. It was long believed ...

Researchers focus on cell membranes to develop Alzheimer's treatments

March 23, 2017
Thin parts of the cell membranes of neurons turn out to be particularly vulnerable to a protein that collects in the brain of people with Alzheimer's disease, according to a University of Michigan researcher.

Recommended for you

Neurons with good housekeeping are protected from Alzheimer's

December 17, 2018
Some neurons in the brain protect themselves from Alzheimer's with a cellular cleaning system that sweeps away toxic proteins associated with the disease, according to a new study from Columbia University and the University ...

Growing a brain: Two-step control mechanism identified in mouse stem cells

December 17, 2018
Scientists have identified two distinct control mechanisms in the developmental transition of undifferentiated stem cells into healthy brain cells. This fundamental research using mice may inform regenerative medicine treatments ...

Does diabetes damage brain health?

December 14, 2018
(HealthDay)—Diabetes has been tied to a number of complications such as kidney disease, but new research has found that older people with type 2 diabetes can also have more difficulties with thinking and memory.

Amyloid pathology transmission in lab mice and historic medical treatments

December 13, 2018
A UCL-led study has confirmed that some vials of a hormone used in discontinued medical treatments contained seeds of a protein implicated in Alzheimer's disease, and are able to seed amyloid pathology in mice.

Study links slowed brainwaves to early signs of dementia

December 13, 2018
To turn back the clock on Alzheimer's disease, many researchers are seeking ways to effectively diagnose the neurodegenerative disorder earlier.

New discoveries predict ability to forecast dementia from single molecule

December 11, 2018
Scientists who recently identified the molecular start of Alzheimer's disease have used that finding to determine that it should be possible to forecast which type of dementia will develop over time—a form of personalized ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.